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ABSTRACT
Relational machine learning methods can significantly improve the
predictive accuracy of models for a range of network domains, from
social networks to physical and biological networks. The methods
automatically learn network correlation patterns from observed
data and then use them in a collective inference process to prop-
agate predictions throughout the network. While previous work
has indicated that both link density and network autocorrelation
impact the performance of collective classification models, this is
based on observations from a limited set of real world networks
available for empirical evaluation. There has been some work using
synthetic data to systematically study model performance as data
characteristics are varied, but the complexity of generating realis-
tic network structures made it difficult to consider characteristics
jointly. In this paper, we exploit a recently developed method for
sampling attribute networks with realistic network structure (i.e.,
parameters learned from real networks) and correlated attributes.
Using synthetic data generated from the model, we conduct a sys-
temic study of relational learning and collective inference methods
to investigate how graph characteristic interact with attribute cor-
relation to impact classification accuracy. Notably, we show that
AUC performance of the method can be accurately predicted with
a linear function of link density and attribute correlation.
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1 INTRODUCTION
Relational machine learning and collective inference have recently
been used to significantly improve the predictive accuracy of node
classifications in network domains [1]. These models exploit net-
work correlation between the attribute values of linked nodes to
improve classification accuracy. For example, in social networks a
pair of linked friends is more likely to share the same political views
than two randomly selected people. Machine learning methods that
automatically identify network correlation patterns in observed
network data and then use them in a collective (i.e., joint) inference
process to propagate predictions throughout the network, have
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been used successfully across a range of network domains, from
social networks to physical and biological networks.

Collective classification methods (e.g., [2]) take advantage of ho-
mophily (i.e., the principle that links between similar people occurs
at a higher rate than among dissimilar people). Many collective clas-
sification models consist of local model templates that are “rolled
out” over the heterogeneous network structure for learning and
inference. Thus the local model structure (e.g., attribute correlation
across links) may interact with the network structure (e.g., graph
connectivity) to impact the accuracy we can obtain using collective
classification.

The range of empirical evaluation in the field has indicated that
network structure and network autocorrelation impact the perfor-
mance of collective classification models. However, this is based on
observations from a limited set of real world networks available for
study. There has been some work using synthetic data to systemat-
ically study model performance as data characteristics are varied,
but the complexity of generating realistic network structures made
it difficult to consider characteristics jointly. Specifically, Sen et
al. [3] study some of the effects of varying link density and local
homophily on classification accuracy. However, in their work one
of the metrics is “fixed” while the other is varied. Thus there are
still open questions about how both characteristics jointly impact
performance. Moreover, there are many other graph and attribute
characteristics that could be impacting accuracy of the various
methods as well.

The goal of this work is to investigate the following open ques-
tions: (1) How do attribute correlation and link density jointly
affect the accuracy of collective classification? (2) Are there other
graph/attribute measures that can help determine the accuracy of
collective classification methods? (3) In which scenarios is it better
to learn a model vs. simple label propagation?

In our work, we exploit a recently developed method for sam-
pling attribute networks with realistic network structure (i.e., pa-
rameters learned from real networks) and correlated attributes [4].
Using synthetic data generated from the model, we conduct a sys-
temic study of relational learning and collective inference methods
to investigate how graph characteristic interact with attribute corre-
lation to impact classification accuracy. Specifically, we jointly vary
the label correlation and link density in order to study these effects
simultaneously, something that wasn’t possible in prior work.

Our results show that link density and attribute correlation
are the characteristics that best describe the changes in accuracy
of collective classification. As one of them or both increase, the
accuracy of collective classification increases too. Notably, we find
that AUC performance can be accurately predicted with a linear
function of link density and attribute correlation. Finally, as we
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have more labeled data available, it is better to learn a model vs.
doing simple label propagation.

2 RELATEDWORK
Macskassy and Provost [1] explore various collective classification
methods with homogeneous, univariate networks (the class label
is the only attribute). They outline the two main components for
collective classification, which are the collective inference method
and the relational classifier. In particular, they show results on
available datasets and compare how the combination of components
from methods in the literature, as well as percentages of labeled
data in training, affect the accuracy of the predictions.

Previously there had been no large-scale, systematic experi-
mental study of machine learning methods for within-network
classification. Some of the obstacles for such a systematic study
are that many learning algorithms can be separated into subcom-
ponents (ideally, the contributions of such subcomponents should
be assessed). For collective inference methods, they study com-
monly used approximate inference algorithms: the iterative classifi-
cation algorithm (ICA), relaxation labeling (RL) and gibbs sampling
(GS). For relational classifiers, they studied weighted-vote relational
neighbor (WVRN), class-distribution relational neighbor (CDRN),
network-only naïve Bayes (NBC) and network-only link-based clas-
sification (NLB). Although the authors address that angle, they do
not explore how the network-characteristics of the datasets used
impact the results of collective classification methods.

P. Sen, G. Namata, M. Bilgic et al. [3] study of some of the effects
of varying link density and the local homophily. For collective infer-
ence methods, they study commonly used approximate inference
algorithms: the iterative classification algorithm (ICA) and gibbs
sampling (GS). For relational classifiers, they studied naïve Bayes
(NB) and Logistic Regression (LR). In their results, they show that
when homophily in the graph was low, both content-only (CO) and
collective classification (CC) algorithms performed equally well,
which was expected result based on similar work. As they increased
the amount of homophily (leaving link density fixed), all CC algo-
rithms drastically improved their performance over CO classifiers.
Finally, as they increased the link density of the graphs (leaving
correlation fixed), accuracies for all CC algorithms went up, pos-
sibly because the relational information became more significant
and useful. In future work, the authors state that they believe that
a better understanding of when these algorithms perform well will
lead to more widespread application of these algorithms to more
real-world tasks and that this should be a subject of future research.

In this work, we systematically study how network structure
and attribute correlation together affect the performance of CC
algorithms. Furthermore, since the proportion of labeled vertices in
the network has been showed to affect the results, we will include
it in the analysis. Our goal is to determine the network structure
characteristics that affect CC the most, along with the attribute
correlation and the proportion of labeled vertices, and characterize
their impact in the accuracy of the classifications made. These
results may differ according to the CC subcomponents employed.

3 PROBLEM STATEMENT
The research questions we wish to answer with this work: (1) How
do attribute correlation and link density jointly affect the accuracy
of collective classification?, (2) Are there other graph measures that
can help determine the accuracy of collective classification? and (3)
When is it better to learn a model versus doing label propagation
(with weighted-voting)? More formally, we wish to test the follow-
ing hypothesis: As attribute correlation and/or link density increases,
the accuracy of collective classification models increases.

4 ALGORITHMS
Collective classification is the simultaneous prediction of the class
of several objects given the objects’ attributes and their relations.

The experimental setup is similar to that of Macskassy et al. [1],
where there is a single attribute 𝑋𝑖 of a vertex 𝑣𝑖 , representing the
class, can take a binary value – for two classes, 𝑋 = {0, 1}. Here, 𝑐
refers to a non-specified class value.

Given a graph G = (V,E,X) where 𝑋𝑖 is the (single) attribute
of vertex 𝑣𝑖 ∈ V, and given known values 𝑥𝑖 for some subset of
verticesV𝐾 , we infer the values 𝑥𝑖 of𝑋𝑖 for the remaining unknown
vertices, V𝑈 = V − V𝐾 , or a probability distribution over those
values.

Given N𝑖 (1-hop neighborhood of vertex 𝑣𝑖 ), a relational model
can be used to estimate 𝑥𝑖 . It is worth noting that just like esti-
mates of the labels of N𝑈

𝑖
influence the estimate for 𝑥𝑖 , then 𝑥𝑖

also influences the estimates of the labels of 𝑣 𝑗 ∈ N𝑈
𝑖
. In order to

simultaneously estimate these interdependent values x𝑈 , we need
to apply a collective inference method as well.

4.1 Relational Classifiers
The relational model makes use of the relation in the network as
well as the values of attributes of related entities, possibly through
long chains of relations.

GivenG𝐾 (the graph with known labels), the relational classifier
returns a modelM𝑅 that will estimate 𝑥𝑖 using 𝑣𝑖 and N𝑖 . Ideally,
M𝑅 will estimate a probability distribution over the possible values
for 𝑥𝑖 .

Weighted-voting. Also referred to as weighted-vote relational neigh-
bor classifier (WVRN) [1], it is the simplest classifier that estimates
class-membership probabilities by assuming the existence of ho-
mophily.

Given 𝑣𝑖 ∈ V𝑈 , WVRN estimates 𝑃 (𝑥𝑖 |N𝑖 ) as the (weighted)
mean of the class-membership probabilities in N𝑖 :

𝑃 (𝑥𝑖 = 𝑐 |N𝑖 ) =
1
𝑍

∑
𝑣𝑗 ∈N𝑖

𝑤𝑖 𝑗 · 𝑃 (𝑥 𝑗 = 𝑐 |N𝑗 ), (1)

where 𝑍 is the usual normalizer. This can be viewed simply as
an inference procedure, or as a probability model.

Relational Naive Bayes. Also referred to as network-only bayes clas-
sifier (NBC) [1], it uses multinomial naive Bayesian classification
based on the classes of 𝑣𝑖 ’s neighbors.

𝑃 (𝑥𝑖 = 𝑐 |N𝑖 ) =
𝑃 (N𝑖 |𝑐) · 𝑃 (𝑐)

𝑃 (N𝑖 )
, (2)

where
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𝑃 (N𝑖 |𝑐) =
1
𝑍

∏
𝑣𝑗 ∈N𝑖

𝑃 (𝑥 𝑗 = 𝑥 𝑗 |𝑥𝑖 = 𝑐)𝑤𝑖 𝑗

where𝑍 is a normalizing constant and 𝑥 𝑗 is the class observed at
node 𝑣 𝑗 . As usual, because 𝑃 (N𝑖 ) is the same for all classes, normal-
ization across the classes allows us to avoid explicitly computing
it. Laplace smoothing is applied with𝑚 = |𝑋 | (i.e., the number of
classes).

Relational Logistic Regression. This classifier is based similar to the
approach of Lu and Getoor [5] and Macskassy and Provost [1]. The
relational part consists of creating a feature vector of aggregated
labels for a node’s 1-hop neighborhood. In particular, the feature
vector ®𝑓𝑖 for a node 𝑣𝑖 ∈ V𝑈 consists of the unnormalized class
label counts and ratio of class labels of the neighbors.

Then, a logistic regression classifier (LR) is used to build a dis-
criminative model based on these feature vectors. The learned
model is then applied to estimate 𝑃 (𝑥𝑖 = 𝑐 |N𝑖 ).

4.2 Collective Inference Methods
The collective inference component determines how the unknown
values are estimated together, possibly influencing each other.

Given a graph G possibly with some 𝑥𝑖 known, a set of prior
estimates for x𝑈 , and a relational modelM𝑅 , this module applies
collective inferencing to estimate x𝑈 .

The initialization of class probabilities can be done in several
ways: (1) using a local classifier (which only uses the attributes of
the vertex 𝑣𝑖 ), (2) randomly initializing with the class prior (as in
the case of Gibbs Sampling). The probability is computed using the
relational model M𝑅 . Finally, the probability for the vertex 𝑣𝑖 is
updated at each iteration step according to the collective inference
method’s update step.

Gibbs Sampling. The update step here is to sample a class label with
the probability given by the relational modelM𝑅 .

The above outlined iteration is repeated 200 times without keep-
ing any statistics–this is known as the burnin period. Then, it is
repeated for a maximum of 2000 iterations. Counting the number
of times each 𝑋𝑖 is assigned a particular value 𝑐 ∈ 𝑋 . Normalizing
these counts forms the final class probability estimates. [1]

Relaxation Labeling. The update step here is to estimate the class
membership probabilities as follows:

ĉ𝑖 (𝑡+1) = 𝛽 (𝑡+1) ·M𝑅 (𝑣 (𝑡 )𝑖 ) + (1 − 𝛽 (𝑡+1) ) · ĉ𝑖 (𝑡 ) , where

𝛽0 = 𝑘, and 𝛽 (𝑡+1) = 𝛽 (𝑡 ) · 𝛼

and where 𝑡 is the current iteration, 𝑘 is a constant between 0 and
1, which is set to 1.0, and 𝛼 is a decay constant, which is set to 0.99,
following the experimental setup by Macskassy et al. [1] Lastly, the
maximum number of iterations for this method is set to 100.

5 DATA
Using the recent work of Robles et al. [4] on Sampling of Attributed
Networks From Hierarchical Generative Models, we can generate
attributed networks with varying network structure and attribute
dependence. Their CSAG method, which is implemented using

mixed Kronecker Product Graph Models (mKPGM), samples net-
works from a hierarchical generative network model (GNM) and
constrains every step of the sampling process to consider the struc-
ture of the GNM in order to bias the search to regions of the space
with higher likelihood. This allows to generate networks with both
correlated attributes and complex structure.

CSAG is a new method to approximate sampling from structure
and attributes 𝑃 (𝐺,X) using mKPGM models in the proposal dis-
tribution. CSAG is a 2-stage constrained sampling method from a
distribution 𝑄 ′ ∼ 𝑃 : it first samples a set of blocks from a region of
feasibility and then samples edges from the selected block-space.
CSAG is applicable to mKPGM and other models.

In the first dataset of networks generated, we start from the same
𝜃 initiatior matrix for mKPGM [6]—used to determine edge proba-
bilities between vertices— in Equation (3), and vary the individual
𝜃s in small increments to increase the link density.

𝜃 =

[
0.7466 0.6629
0.6629 0.1402

]
(3)

To vary the level of attribute correlation, we simply vary a
parameter passed to the CSAG generative method. We generated
168 networks from the 𝜃 in Equation (3).

To corroborate that the results we obtained from using the 𝜃
initiatior matrix in Equation (3), we also created a second set of
networks from a combination of possible values for each individual
𝜃 in the initiator matrix. The resulting 𝜃 initiatior matrix is shown
in Equation (4). We generated 401 networks from using these 𝜃s.

𝜃 =

[
𝜃11 𝜃12
𝜃21 𝜃22

]
(4)

Where 𝜃11 ∈ {0.99, 0.95, 0.9, 0.85, 0.8}, 𝜃12 ∈ {0.55, 0.45,
0.35, 0.25, 0.15} and 𝜃22 ∈ {0.75, 0.65, 0.55, 0.45, 0.35}. The values
for 𝜃11, 𝜃12, 𝜃22 were picked by making 𝜃11 to be the largest value to
enforce identifiability [7] and making 𝜃21 = 𝜃12 to create undirected
graphs [6]. The theta in Equation (3) was also derived in this manner,
following these relationships in the values which are also seen in
learned parameters from real-world data [6]. All the graphs created
have one binary label per vertex for the attributes, with balanced
classes across the graph, and the edges are all weighted the same
(i.e.,𝑤𝑖 𝑗 = 1 ∀ 𝑒𝑖 𝑗 ∈ E).

6 METHODOLOGY
Experiment 1. We wish to study how the results of collective clas-
sification are affected by: (1) graph characteristics, (2) attribute char-
acteristics, (3) collective classification methods, and (4) percentage
of available node labels in the “bootstrapping” [3] of the predic-
tions. By exploring these characteristics, we can obtain a better
understanding of the conditions needed to obtain good results us-
ing collective classification. This understanding will be particularly
useful for employing these methods with real data.

For the learning step, the size of the training set in the ex-
periments will be varied among 20%, 50%, and 80% using cross-
validation. The relational model M𝑅 is learned from the folds used
for training (i.e. V𝐾 ). In the classification step, some existing back-
ground knowledge is needed to be able to get good results [1].
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Therefore, we will use the vertices from V𝐾 (the vertices with
known labels) as background knowledge.

To assess the contributions for the different subcomponents,
we perform the experiments on all combinations of the collective
inference methods with the classifiers, as described in Section 3.

With the generated networks, we will be able to measure the
quality of the predictions made by different collective classification
methods using the area under the ROC curve (AUC). Another aspect
of the performance that we will evaluate, is how the percentage of
available node labels in the “bootstrapping” [3] of the predictions
can also impact the results we observe.

Likewise, although we will vary parameters such as link density
and correlation for the generation of networks, different 𝜃 initiator
matrices for mKPGM will affect network structure. Therefore, addi-
tional networks were generated by varying the 𝜃 initiator matrix
values, as previously described in Section 5.

In regards to the graph and attribute characteristics previously
mentioned, some graph characteristics that could be affecting the
quality of the predictions and we study are: (1) link density, (2)
clustering coefficient, (3) average path length, (4) size of the largest
connected component, (5) average node degree, (6) 𝑠-metric value
of the network [8], and (7) eigengap of the two largest eigenvalues.
For attribute characteristics, we studied the following: (1) 1-hop
neighborhood class correlation (i.e., Pearson correlation coefficient),
(2) 2-hop neighborhood class correlation, (3) average class entropy,
(4) baseline autocorrelation due to random chance.

Experiment 2. To compare the difference of learning a model
versus doing label propagation, we plotted the increase in AUC
scores of the NBC over WVRN. We show the resulting plots for
the results from Experiment 1, where RL is used as the collective
inference method.

Experiment 3. To answer our third question—when is it bet-
ter to learn a model versus doing label propagation?—we need to
characterize the impact of the (1) proportion of labeled vertices
(for bootstrapping), (2) graph density, and (3) attribute correlation,
in the resulting AUC scores obtained with collective classification.
Thus, we learned a linear regression model on the CC results so that
we can predict the AUC score for CC depending on the three previ-
ously mentioned characteristics of the input graph. We included
these three characteristics as the features for the model and we
predict the AUC score. Our input here are the graph characteristics
used for Experiment 1, as features, and the resulting AUC score,
for the linear regression task. We used 5-fold cross-validation to
evaluate the model. We learned three versions of the model, (1) for
all networks (that we generated in Section 5) and for those with (2)
positive correlation only, and (3) negative correlation only.

7 RESULTS
In the Figures for Experiments 1 and 2, the small circles represent a
graph generated with the given metric (e.g., correlation) and value
on the y-axis, and the given metric (e.g., link density in Figure 2,
clustering coefficient in Figure 3) and value on the x-axis. The space
is filled with color according to the AUC score using the score of
the nearest points (i.e., graphs). In particular, this is done by finding
the convex hull [9] [10] of all points and then doing a Delaunay

triangulation to separate the spaces for coloring according to the
AUC score.

Experiment 1. In the experiments for the first set of networks
from the 𝜃 in Equation (3), it seems that the characteristics that
jointly affect the AUC scores in a monotonic manner are the 1-hop
attribute correlation combined with the link-density (See Figure
2). The results and plots (omitted for space) for the second set of
networks from the 𝜃 in Equation (4), exhibit the same behavior to
those of the first 𝜃 in Equation (3). NBC performs well with higher
correlation (positive or negative) or density. WVRN performs well
with higher correlation (positive) or density. LR performed poorly
with the relational features used; the AUC scores were near random
and the plots are omitted for space.

From the rest of combinations of attribute characteristics and
graph characteristics, the 1-hop attribute correlation combined with
the clustering coefficient seems to also have a relationship behaving
similar to the previous results, although it does not seem completely
monotonic (See Figure 3). Another combination of characteristics
that seems to have a relation with the AUC score, is the 1-hop
attribute correlation and eigengap of the two largest eigenvalues.
In particular, if you take a look at Figures 6d and 6h, as there are
more labeled nodes available for “bootstrapping”, the eigengap has
more impact on the scores. The rest of the graph characteristics we
evaluated, did not have a monotonic relationship with any of the
attribute characteristics (See Figures 5 and 6, for sample plots).

Experiment 2. As observed in Figure 4, learning a model (NBC)
performs better for negative correlation so this is the area where
we see the most gain in AUC scores. There are also some gains
when the networks have positive correlation and we have more
training data available.

Network
Samples

NBC
& RL

NBC
& GS

WVRN
& RL

WVRN
& GS

All 36% 18% 15% 14%
Positive
correlation 80% 66% 91% 91%

Negative
correlation 86% 86% 90% 90%

Table 1: Mean accuracy of predicting AUC scores for CC us-
ing networks generated from 𝜃 in Eq. (3)

Experiment 3. Table 1 lists the mean accuracy obtained on
the cross-validation folds (as determined by absolute error) of pre-
dicting the AUC scores. We can most accurately predict the AUC
scores when the collective inference method is relaxation labeling
(RL). WVRN is a simple classifier, and thus the collective inference
method does not have an effect on how well we can predict the
AUC score. In Figure 1, note that the coefficient for the density
feature is much larger in part due to the densities being very small
proportions compared to the other features (i.e., the features are
not normalized).

8 DISCUSSION
Experiment 1. Some observations from the results in Figure 2:
(1) The weighted-voting classifier does not learn (it assumes ho-
mophily) and thus cannot model negative correlation. Therefore,
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Figure 1: Linear Regression Coefficients

it needs high (positive) correlation and high density to work well.
(2) Logistic regression needs more correlation to linearly separate
classes; Naive Bayes is significantly more accurate on these net-
works. (3) Relaxation labeling often performs better than Gibbs
sampling. (4) At least 20-30% correlation is needed to improve accu-
racy, depending on the graph density (5) When there is low density,
a higher correlation is needed to learn a better model; As density
increases, lower correlation can achieve similar results.

Regarding our hypothesis, the results indicate that: as attribute
correlation and/or link density increases, the accuracy of collective
classification models also increases. The significance of this is that
even if we have lower levels of label autocorrelation, if our network
is more dense then we can achieve higher accuracy.

Experiment 2. Furthermore, as we have more labeled data
(known vertices) it is better to learn a model like NBC versus doing
label propagation with WVRN, as observed in Figure 4.

Experiment 3. We have also shown, in Figure 1 and Table 1,
that it is possible to predict the AUC score we can obtain with CC
methods. The significance of this is that with the learned linear
regression coefficients for a CC method on some networks, we can
just predict the AUC score and use this to pick the CC method that
will likely perform the best for a particular network.

In Figure 1, it is interesting that (1) when predicting AUC scores
for NBC, we have more accuracy in the learned model for negative
correlation, than for positive correlation, and (2) for WVRN the
proportion of labeled vertices has almost no impact.
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(a) WVRN & GS, 20% training set
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(b) WVRN & GS, 50% training set
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(c) WVRN & GS, 80% training set
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(e) WVRN & RL, 50% training set
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(f) WVRN & RL, 80% training set
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(h) NBC & GS, 50% training set
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(i) NBC & GS, 80% training set
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0.005 0.010 0.015 0.020 0.025 0.030
density

0.6

0.4

0.2

0.0

0.2

0.4

0.6

co
rr

e
la

ti
o
n

NBC & RL (Train 50%)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
U

C
 s

co
re

(k) NBC & RL, 50% training set
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(l) NBC & RL, 80% training set

Figure 2: Attribute Correlation (1-hop) vs Link-Density
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(b) WVRN & RL, 50% training set
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(c) WVRN & RL, 80% training set
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(d) NBC & RL, 20% training set
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(e) NBC & RL, 50% training set
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(f) NBC & RL, 80% training set

Figure 3: Attribute Correlation (1-hop) vs Clustering Coefficient
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(a) GS, 20% training set
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(b) GS, 50% training set
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(c) GS, 80% training set
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(d) RL, 20% training set
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(e) RL, 50% training set
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(f) RL, 80% training set

Figure 4: Difference of learning a model: Attribute Correlation (1-hop) vs Link-Density
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(b) 1-hop correlation &
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(d) 1-hop correlation &
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(h) 1-hop correlation &
eigengap (80%)

Figure 5: WVRN & RL, 50% training set
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Figure 6: NBC & RL, 50% training set
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