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ABSTRACT
Graph structure in dynamic networks changes rapidly. Using tem-
poral information about their connections, models for dynamic
networks can be developed and used to understand the process of
how their structure changes over time. Additionally, higher-order
motifs have been established as building blocks for the structure of
networks. In this paper, we first demonstrate empirically in three
dynamic network datasets, that motifs with edges: (1) do not transi-
tion from one motif type to another (e.g, wedges becoming triangles
and vice-versa); (2) motifs re-appear in other time periods and the
rate depends on their configuration.We propose the DynamicMotif-
Activity Model (DMA) for sampling synthetic dynamic graphs with
parameters learned from an observed network. We evaluate our
DMA model, with two dynamic graph generative model baselines,
by measuring different graph structure metrics in the generated
synthetic graphs and comparing with the graph used as input. Our
results show that employing motifs captures the underlying graph
structure and modeling their activity recreates the fast changes
seen in dynamic networks.
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1 INTRODUCTION
Networks are a way to study complex systems from a wide range
of domains, such as social, biological, computing and communica-
tion networks. Until recently, these networks have been studied
as static graphs, by modeling them as growing networks or ag-
gregating temporal data into one graph. In reality, most of these
networks are dynamic in nature and evolve over time, with nodes
and edges being added and removed. Many generative models for
static graphs have aimed to generate synthetic graphs that can
simulate real-world networks. There have been extensions to the
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Erdős-Rényi random graph model [3], such as Exponential Random
Graph Models (ERGMs) [27] and Chung-Lu models [2], to produce
the degree distributions observed in social networks. Other models,
such as Stochastic Block Models [19] and the Kronecker Product
GraphModel (KPGM) [12], can generate clusters of connected nodes
(communities). Statistical models where model parameters can be
estimated from observed data, such as ERGMs and KPGMs, allow
generation of graphs by sampling from the estimated distribution.
However, these methods focus on capturing either global or local
graph properties, but not both. Moreover, the graphs generated
by both models do not reflect the natural variability of real-world
graphs [17]. An extension to KPGMs, the mixed-KPGM (mKPGM)
[18] uses parameter tying to capture the variance in the underlying
distribution.

Network motifs or graphlets are small induced subgraphs occur-
ring in a larger network structure, which have been shown to be
building blocks for complex networks [15]. Graph motif structures,
such as triangles, wedges, squares, etc. and the number of instances
in graphs are a way to characterize and compare those graphs [28].
Comparing the triangle and wedge counts of two graphs is effec-
tively contrasting them based on clustering coefficient and this is a
means of doing anomaly detection or classification of graphs. The
definition of motifs and graphlets has been extended to temporal
networks by having all the edges in a given motif occur inside a
time period [6, 20, 30]. Most of the work on temporal motifs has
focused on modeling the evolution of these structures over time,
such as wedges becoming triangles, in aggregated temporal data
[1, 20, 29]. More recently, generative models using temporal motifs
have been proposed for synthetic temporal networks where links
are aggregated over time [23]. However, this approach assumes
that edges will not be removed once they are placed.

Modeling this behavior of dynamic networks where links appear
and disappear, such as communication patterns in social networks,
is of interest. In this paper, we propose a dynamic graph genera-
tive model using temporal motifs as building blocks. In Section 2,
we go over related work, with the same problem formulation, in
more detail. In Section 3, we study the temporal motif behavior in
subsequent time windows for various temporal network datasets.
We found that, unlike in the aggregated temporal graphs, motifs
did not evolve. We also observed that once a motif showed up, it
would reappear in that same configuration (i.e., wedges remained
wedges). In Section 4, we lay out our motif-activity dynamic gener-
ative model. In Section 5, we evaluate the structure of the temporal
graphs generated by our model against two baselines. These base-
lines are also generative models for dynamic graphs but do not
use motifs. We used various metrics for global and local graph
structure to see if the generated synthetic graphs are similar to the
dataset used for parameter estimation. We found that by using a
motif-based approach, our model generates both local and global
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clustering close to what is observed in the real data. Each of the
metrics we used measure different graph structure properties and
should be considered together. To compare the graphs utilizing all
the metrics, we performed a principal component analysis (PCA)
to plot how far or close the graphs are to each other. We then show
that our model has the most overlap with the real data. Finally, in
Section 6, we discuss the results and go over future work.

2 RELATEDWORK
Most models for temporal or dynamic networks have focused on
modeling the edges over time, such as [4, 7, 24]. A straightforward
approach to generating temporal networks is to generate first a
static graph from somemodel, and for each link generate a sequence
of contacts [5]. Holme [4] uses an approach where they draw de-
grees from a probability distribution and matches the nodes in
random pairs for placing links. Then, for every link, they generate
an active interval duration from a truncated power-law distribution,
and uniform random starting time within that time frame. Rocha
and Blondel [24] use a similar method where the active interval of
a node starts when another node’s interval ends. Another approach
is to start with an empty graph. Then, for every node, they make it
active according to a probability and connect it to𝑚 random nodes.
Perra et al. [21] use a truncated power-law distribution for each
node’s probability of being active. Laurent et al. [11] extend this
model to include memory driven interactions and cyclic closure.
Other extensions include aging effects [16] and lifetimes of links
[25]. Vestergard et al. [26] model nodes and links as being active or
inactive using temporal memory effects. Zhang et al. [29] study the
evolution of motifs in temporal networks by looking at changes
in bipartite motifs in subsequent timesteps. Benson et al. [1] study
higher-order networks and model how 3-node motifs evolve from
being empty to becoming a triangle in aggregated temporal graphs.
Purohit et al. [23] propose a generative model for synthetic tem-
poral networks where links are aggregated over time (i.e., no link
deletions).

3 EMPIRICAL STUDY
3.1 Datasets
3.1.1 Enron emails. The Enron email network consists of emails
sent between employees of Enron [8, 9]. Nodes in the network are
individual employees and edges are individual emails.

3.1.2 EU emails. This is the email communication network of a
large, undisclosed European institution [9, 13]. Nodes represent
individual persons and edges that at least one email has been sent
from one person to the other. All edges are simple and spam emails
have been removed from the dataset.

3.1.3 Wikipedia links (English). This dynamic network shows the
evolution of hyperlinks between Wikipedia articles [9, 22]. The
nodes represent articles. Edges include time-stamps and indicate
that a hyperlink was added or removed depending on the edge
weight (-1 for removal or +1 for addition).

3.2 Motif Evolution
Motifs have been demonstrated to evolve in aggregated temporal
graphs (i.e. triadic closure) [1, 20, 29]. In this initial study, we inves-
tigated if similar dynamics occurred when considering subsequent
time windows (e.g., if they appear, merge, split and/or disappear
over time). We assume an underlying time-homogeneous discrete
Markov process, where the graph structure at the next timestep 𝑡 +1
depends on the current timestep 𝑡 . Each timestep corresponds to a
time window of the temporal graph. Then, we consider all 3-node
motifs at each timestep to either transform from one motif type to
another or remain the same, and isomorphisms are combined into
the same configuration.

The transition probability matrices for both email datasets (En-
ron and EU) show that the motifs with edges (i.e., 1-edge, wedge,
and triangle) will either keep their current motif type, or become
empty with almost the equal probability (Figures 1a, 1b). This is also
reflected when looking at the total transition counts across time
periods (Figures 4, 5). For each motif type with edges, the counts of
staying is very close to the counts of becoming empty at the next
time period. In contrast, for the Wikipedia dataset, graph keeps
growing with more links between articles being added with very
few removed (Figure 6). This makes it unlikely to see any motif
with edges becoming empty (Figure 1c).

We did not observe motifs with edges changing from one motif
type to another (e.g, wedges becoming triangles and vice-versa),
even when picking different time windows to create the timesteps.
The matrix of total transition counts for each dataset (Figures 4,
5, 6) show that the only non-zero entries are: (1) the first column,
where motifs become empty; (2) the first row, where motifs with
edges appear after some time; (3) the diagonal, where the motifs
keep the same motif type.

4 DYNAMIC MOTIF-ACTIVITY MODEL
Our generative model assumes there are two underlying processes:
(1) nodes in the graph become active and remain that way, (2) motifs
are “born" in some configuration, which we call motif type, and
they reappear according to some rate. We define a dynamic graph
as a sequence of graphs over time 𝐺 = {𝐺1, . . . ,𝐺𝑇 }, where 𝑇 is
the number of timesteps. Our task it to sample a synthetic dynamic
graph with similar structure and behavior as the observed data
used to learn the model parameters.

We model the time until nodes become active as Exponential
random variables with the same rate 𝜆𝑉 . Since we consider all
possible 3-node motifs, there will be edges shared amongst them.
Therefore, to estimate the inter-arrival rate for each motif, the
counts of how many times it appeared is weighted by the number
of shared edges with other motifs. For each motif type with edges
(i.e., 1-edge, wedge, and triangle), we fit an Exponential distribution
with the motif inter-arrival rates of that type. Motivated by our
findings in Section 3, when a motif is first sampled it will keep
the same configuration in the future. We also keep the motif type
proportions constant when sampling new motifs.

4.1 Sampling
Our general sampling procedure is described in Alg. 1: In Line 2,
we first sample the nodes that are active at each timestep (Alg. 3).
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(a) Enron emails (b) EU emails (c) Wikipedia links

Figure 1: Motif Transition Probabilities

Whenever new nodes become active, we calculate the new triplets
of active nodes that are now eligible to be sampled as a motif in Line
5. In Line 6, we proceed to sample motifs and their types (Alg. 4).
We store the motifs we just sampled in Line 7, and sample their
edges afterwards (Alg. 6).

For now, we assume we have as input initial motif types and edge
placements for the triplets. Then, if there aren’t enough triplets
assigned to one of the motif types “buckets” in the initial assign-
ments to maintain the proportions, we reassign triplets to meet the
expected counts for each “bucket” and add or remove any edges
necessary (Alg. 5). In line 10, we store the edges assigned to each
motif. Next, we sample inter-arrival times for the motifs (Alg. 7).
Finally, we construct the dynamic graph 𝐺 = {𝐺1, . . . ,𝐺𝑇 } using
the motif edge placements𝑀𝐸 and timestamps𝑀𝑆 sampled.

4.2 Learning
Given an observed dynamic graph 𝐺 = {𝐺1, . . . ,𝐺𝑇 }, consisting
of a sequence of graphs 𝐺𝑡 that correspond to time windows, we
estimate the input parameters for our generative process. We begin
by estimating the node arrival rate 𝜆𝑉 using the time from when
the dataset begins until each node has it’s first edge.

Then, in Alg. 2 we find themotifs in each graph snapshot𝐺𝑡 , ∀𝑡 ∈
[1, . . . ,𝑇 ]. For each 3-node motif {𝑢, 𝑣,𝑤}, we find its motif type 𝑖
at timestep 𝑡 (Line 8). If we have previously seen {𝑢, 𝑣,𝑤} and the
motif type 𝑖 is of higher order at the current timestep 𝑡 , then we
update the type stored to be 𝑖 (Line 13). For example, if we observe
{𝑢, 𝑣,𝑤} is a triangle at timestep 𝑡 and previously saw it as a wedge,
we update𝑀𝑇

(
{𝑢, 𝑣,𝑤}

)
as a triangle.

We calculate the proportions 𝑝 (𝑖)
𝑀

of each motif type in the graph,
where 𝑖 is the number of links in the motif (i.e., 𝑖 = 1 for 1-edge,
𝑖 = 2 for wedge, and 𝑖 = 3 for triangle).

𝑝
(𝑖)
𝑀

=

{
{𝑢, 𝑣,𝑤} ∈ 𝑀

��𝑀𝑇
(
{𝑢, 𝑣,𝑤}

)
= 𝑖

}(𝑁
3
) , for 𝑖 ∈ [1, 2, 3]

𝑝
(0)
𝑀

= 1 −
𝑛∑
𝑖=1

𝑝
(𝑖)
𝑀

(1)

where𝑀 is the set of motifs, and {𝑢, 𝑣,𝑤} is a motif consisting of
the nodes 𝑢, 𝑣 ,𝑤 .

Algorithm 1: SampleDynamicGraph
input :𝑇 num. of timesteps to generate,

𝑁 num. of nodes,
𝜆𝑉 rate at which nodes become active,
𝑝𝑀 = (𝑝 (0)

𝑀
, . . . , 𝑝

(3)
𝑀
) proportions motif types,

𝜆𝑀 = (𝜆 (1)
𝑀

, . . . , 𝜆
(3)
𝑀
) rates of inter-arrival rates,

𝐼𝑇 initial motif type assignments,
𝐼𝐸 initial motif edge assignments

output :𝐺 = {𝐺1, . . . ,𝐺𝑇 }, where 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 , 𝑆𝑡 )
1 begin
2 𝑉 ← GetActiveNodes(𝑇, 𝑁, 𝜆𝑉 )

3 𝑀 ← ∅, 𝑀𝑆 ← ∅, 𝑀𝐸 ← ∅
4 for 𝑡 ∈ [1, . . . ,𝑇 ] do

// New active triplets at timestep 𝑡

5 𝑈𝑡 ←
{
𝑚 = {𝑢, 𝑣,𝑤} ⊆ 𝑉𝑡 | 𝑢 < 𝑣 < 𝑤, 𝑚 ∉ 𝑈𝑡−1

}
6 𝑀𝑡 , 𝑀

𝑇
𝑡 ← SampleMotifTypes(𝑈𝑡 , 𝑝𝑀 ,𝐼𝑇 )

7 𝑀 ← 𝑀 ∪𝑀𝑡 // save new motifs

8 𝑀𝑇 ← 𝑀𝑇 ∪𝑀𝑇
𝑡 // store their types

9 𝑀𝐸
𝑡 ← SampleMotifEdges(𝑀𝑡 , 𝑀

𝑇 ,𝐼𝑇 , 𝐼𝐸)
10 𝑀𝐸 ← 𝑀𝐸 ∪𝑀𝐸

𝑡 // store their edges

11 𝑀𝑆
𝑡 ← SampleMotifTimestamps(𝑡, 𝑀𝑡 , 𝑀

𝑇 , 𝜆𝑀)

12 𝑀𝑆 ← 𝑀𝑆 ∪𝑀𝑆
𝑡 // store their timestamps

13 𝐺 ← ConstructGraph(𝑀,𝑀𝐸 , 𝑀𝑆)

Finally, for each motif type with edges (𝑖 ∈ [1, 2, 3]), we learn a
rate 𝜆 (𝑖)

𝑀
of inter-arrival rates from the motifs of that type (Eq. 2a,

Eq. 2b). We do not need to estimate rates for the empty motif type
(𝑖 = 0).

𝜆
(𝑖)
𝑀

=

∑
{𝑢,𝑣,𝑤 }∈𝑀 (𝑖 )

(
𝜆𝑀

(
{𝑢, 𝑣,𝑤}

) )
|𝑀 (𝑖) |

(2a)

𝜆𝑀
(
{𝑢, 𝑣,𝑤}

)
=

∑𝑇
𝑡=1𝐶

𝑀
𝑡

(
{𝑢, 𝑣,𝑤}

)
𝑇

(2b)

Since edges might be shared by more than one motif, we use edge-
weighted Poisson counts 𝐶𝑀

𝑡 . per timestep 𝑡 , to estimate the inter-
arrival rate for each motif {𝑢, 𝑣,𝑤} (Eq. 3). The weights𝑊 (𝑖)𝑡 will
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depend on the motif type 𝑖 of {𝑢, 𝑣,𝑤} and are calculated for each
edge (𝑠, 𝑑) ∈ 𝐸𝑡

(
{𝑢, 𝑣,𝑤}

)
(Eq. 4).

𝐶𝑀
𝑡

(
{𝑢, 𝑣,𝑤}

)
=

∑
(𝑠,𝑑) ∈𝐸𝑡

(
{𝑢,𝑣,𝑤 }

)𝑊 (𝑖)𝑡

(
(𝑠, 𝑑)

)��𝐸𝑡 ({𝑢, 𝑣,𝑤}�� (3)

We calculate the edge weights depending on motif type 𝑖 (i.e., Eq. 4a
for triangles, Eq. 4b for wedges, and Eq. 4c for 1-edge motifs). We
give larger edge-weight to motifs types with more edges, since they
are more likely to produce the observed edges. This also ensures
that motifs types with smaller proportion 𝑝

(𝑖)
𝑀

, such as triangles,
have a high enough inter-arrival rate to show up.

𝑊
(3)
𝑡

(
(𝑠, 𝑑)

)
=

1
# triangles (𝑠, 𝑑) is in (4a)

𝑊
(2)
𝑡

(
(𝑠, 𝑑)

)
=

{
0 if (s,d) in a triangle

1
# wedges (𝑠,𝑑) is in otherwise

(4b)

𝑊
(1)
𝑡

(
(𝑠, 𝑑)

)
=

{
0 if (s,d) in a triangle or wedge

1
# 1-edges (𝑠,𝑑) is in otherwise

(4c)

5 METHODOLOGY
5.1 Evaluation
In our empirical studywe foundmotifs show up and disappear at dif-
ferent times in the email datasets. We also observed that the Enron
email dataset mid-timeline (before the scandal became public) has
similar behavior to the EU email dataset. We evaluate on the Enron
email dataset during February 2000 and we created daily timesteps
(excluding weekends and holidays), for a total of 20 timesteps.

The related work using motif-based models for temporal graphs
focus on the aggregate graph and not the dynamic changes over
time. With that in mind, we picked two baselines that aim to model
the changes in dynamic graphs. Using the Enron graph as input,
we estimate initial motif configurations and all parameters of our
DMA model as described in subsection 4.2. We also estimate all
parameters of the baselines from the Enron graph as described
below in subsubsection 5.2.1 and subsubsection 5.2.2.

5.2 Baselines
5.2.1 Static Networks with Link Dynamics Model (SNLD). We used
an approach based on [4], where they begin by generating a static
graph and then generate a series of events. Their procedure begins
by sampling degrees from a probability distribution. They refer to
these degrees as “stubs” and they create links by connecting these
“stubs” randomly. Finally, for each link, they assign a time-series
from an inter-event distribution

We start by sampling the degrees from a Truncated Power-law
distribution. Since our starting point is a static graph, we assume
all the nodes to be active already. Then, we sample inter-event
times for every edge. We found that we could best model the edge
inter-event times in the real data using an Exponential distribution.
To learn the Truncated Power-law parameters, we aggregated and
simplified the real graph.

5.2.2 Activity-Driven Network Model (ADN). We use the approach
in [11], which extends the model in [21] by adding memory effects
and triadic closure. The triadic closure takes place when node 𝑖
connects to node 𝑘 forming a triangle with it’s current neighbor 𝑗
and the memory effect is added counting the number of times that
the nodes have connected up to the current time 𝑡 . The procedure
starts by creating an empty graph 𝐺𝑡 at each timestep. Then, for
each node 𝑖: delete it with probability 𝑝𝑑 or mark it as active with
probability 𝑎𝑖 . If the node is “deleted”, then the edges in the current
timestep are removed, the counts of connections set to zero, and
another degree is sampled to estimate a new𝑎𝑖 . If a node 𝑖 is sampled
as active, we connect it to either: (1) a neighbor 𝑗 , (2) a neighbor of 𝑗 ,
or (3) a random node. We base the probability to create new edges 𝑎𝑖
on the degree of node 𝑖 , which we sample from a Truncated Power-
law distribution. We estimate the parameters using the average
degree across timesteps for the nodes in the real graph. There is a
fixed probability 𝑝𝑑 for any node being “deleted” (losing its previous
connections memory and sampling a new 𝑎𝑖 ). We estimate this
probability using the average ratio of nodes becoming disconnected
in the next timestep. To estimate the probability for triadic closure
(forming a triangle), we use the average global clustering coefficient
across timesteps.

5.3 Results
We use the following graph structure metrics to evaluate the models
against the real data: density, average local clustering coefficient,
global clustering coefficient, diameter and average path length of
largest connected component (LCC), average and median node
degree, average betweenness centrality, and s-metric.

Density measures ratio of edges in the graph versus the number
of edges if it were a complete graph. The local clustering coefficient
of a node measures how close are its neighbors to becoming a
clique. While the global clustering coefficient measures the ratio
of closed triplets (triangles) to open and closed triplets (wedges
and triangles). The betweenness centrality of a node measures the
number of shortest paths that pass through that node. S-metric
measures the extent to which a graph has hub-like structure [14].

Table 1: Average Metrics for Graph Snapshots

SNLD ADN DMA Enron
density 0.0004 0.0007 0.0005 0.0008
avg. local clustering 0.005 0.378 0.172 0.226
global clustering 0.003 0.001 0.019 0.027
path length LCC 3.437 2.123 4.142 3.911
diameter LCC 7.908 4.562 10.888 9.900
avg. node degree 0.352 0.587 0.421 0.729
median node degree 0.000 0.000 0.000 0.050
avg. betweenness 1.200 37.26 16.16 61.75
s-metric 462.2 51,438.3 2,832.3 14,507.6

5.3.1 Generated Graph Snapshots. We generated 1,000 timesteps
with each of the models to account for any variability during the
beginning of the graph generation. The averages across timesteps
for eachmodel are reported in Table 1. The SNLD baseline generates
almost no local or global clustering in the graph snapshots. The
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(a) Local and Global Clustering Coefficients

(b) Diameter and Average Path Length

Figure 2: Graph Snapshot Metrics

snapshots it generates have many isolated edges and wedges, and
long chains, which explain why there is almost no clustering but
large path lengths. The DMA model creates graph snapshots with
multiple hubs connected to each other by longer chains, similar
to what we have seen in the Enron dataset. Some of the Enron
graph snapshots have large hubs which result in a higher s-metric
on average. The ADN baseline generates more local clustering but
very little global clustering. The graph snapshots have very large
hubs, giving a large s-metric value, and a few isolated edges. This
explains the high local clustering but small diameter and global
clustering.

To give context to these observations and reported averages,
we plot the local and global clustering coefficients in Figure 2a, as
well as the average path length and diameter of the graphs in in
Figure 2b, for all timesteps. Both the ADN baseline and the DMA
model are able to closely match the diameter and average path
lengths. The DMA model is also able to generate local and global
clustering that matches the Enron dataset.

We also visualize how close the generated snapshots are to the
dataset, by doing a principal component analysis with all themetrics
(Figure 3a). We also created a “zoomed in” version to look at any

(a) Overview of all models and real data

(b) Close up of SNLD baseline and our model

Figure 3: PCA of Metrics for the Graph Snapshots

overlaps between the models in the lower left corner (Figure 3b).
We can observe, that when considering all the metrics, the DMA
model generates snapshots with the most similar structure to the
real data.

Table 2: Metrics for Aggregated Graphs

SNLD ADN DMA Enron
density 0.0045 0.0047 0.0071 0.0080
avg. local clustering 0.027 0.716 0.308 0.537
global clustering 0.031 0.007 0.048 0.091
path length LCC 4.74 2.00 3.35 3.86
diameter LCC 13.00 2.00 8.00 9.00
avg. node degree 3.54 3.76 5.66 6.33
median node degree 2.00 3.00 3.00 3.00
avg. betweenness 1,308 395 832 1,100
s-metric 105,814 1,754,359 797,402 922,121

5.3.2 Generated Aggregated Graphs. We also evaluate the overall
graph structure without the temporal aspect by looking at the
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metrics for the aggregated graphs (Table 2). Since we generated
graphs for many more timesteps, we sampled 20 timesteps from
the synthetic graphs in order to compare with the Enron dataset.
The aggregated temporal graph generated with the DMA model is
the closest to the Enron email network in most metrics. The ADN
baseline achieves more local clustering and the highest s-metric
due to the very large hubs it creates.

6 DISCUSSION AND FUTUREWORK
We demonstrated in our empirical study of dynamic networks that
motifs with edges: (1) do not change configurations (e.g., wedges
becoming triangles and vice-versa); (2) once they appear, they will
stay during the next time window or disappear. Whereas, the motif
evolution process mentioned in [1, 20, 29] occurs in aggregated
temporal graphs. In our evaluation, we observe that edge-based
models for dynamic graphs are not able to capture the higher-order
interactions; as is also the case with aggregate temporal graphs
[1]. Moreover, even though the second baseline (ADN) [11] adds
memory effects and a triadic closure mechanism, it does not create
the amount of global clustering seen in the real data. Our Dynamic
Motif-Activity Model (DMA), which maintains the motif type pro-
portions, generates synthetic graphs with overall structure close
to the dynamic graph used for parameter estimation. Furthermore,
we tested our approach of using edge-weights, for the motif type
inter-arrival rates estimation, by comparing the rates learned on a
synthetic dynamic network with the ones sampled during its gen-
eration. We found that using this technique when unsure of which
are the motifs present in the data, we can learn the rate parameters
of the “true” distribution.

Our current model assumes as input initial motif type assign-
ments for some of the triplets. Then, depending on how many
motifs are needed to meet the expected counts of each motif type,
it reassigns motif types for the triplets to maintain the motif type
proportions. We are working on a method to sample the motif types
from a probability distribution based on node roles [10]. For exam-
ple, we would like to model the probability of a triplet becoming a
wedge based on how likely the nodes in the triplet are to participate
in a wedge.
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A ADDITIONAL FIGURES

Figure 4: Total Transition Counts: Enron emails

Figure 5: Total Transition Counts: EU emails

Figure 6: Total Transition Counts: Wikipedia links

B ALGORITHMS

Algorithm 2: GetMotifsGraph
input :𝐺 = {𝐺1, . . . ,𝐺𝑇 } graph to learn from

𝑇 num. of timesteps
output :𝑀 motifs in 𝐺

𝑀𝑇 motif types
1 begin
2 𝑀 ← ∅;𝑀𝑇 ← ∅
3 for 𝑡 ∈ [1, . . . ,𝑇 ] do
4 for (𝑢, 𝑣) ∈ 𝐸𝑡 do
5 if 𝑢 ≠ 𝑣 then
6 for𝑤 ∈ 𝑉𝑡 do
7 if 𝑤 ≠ 𝑢 and𝑤 ≠ 𝑣 then

// number unique edges is

motif type 𝑖

8 𝑖 = |𝑀𝐸
(
{𝑢, 𝑣,𝑤}

)
|

9 if {𝑢, 𝑣,𝑤} ∉ 𝑀 then
10 𝑀 ← 𝑀 ∪

{
{𝑢, 𝑣,𝑤}

}
11 𝑀𝑇

(
{𝑢, 𝑣,𝑤}

)
← 𝑖

12 else if 𝑖 > 𝑀𝑇
(
{𝑢, 𝑣,𝑤}

)
then

// prefer higher-order motif

types
13 𝑀𝑇

(
{𝑢, 𝑣,𝑤}

)
← 𝑖

Algorithm 3: GetActiveNodes
input :𝑇 num. of timesteps

𝑁 num. of nodes
𝜆𝑉 node arrival rate

output :𝑉 active nodes per timestep
1 begin
2 𝑉𝑡 ← ∅, ∀𝑗 ∈ [1, . . . ,𝑇 ]
3 for 𝑣 ∈ [1, . . . , 𝑁 ] do
4 𝑎 ∼ 𝐸𝑥𝑝 (𝜆𝑉 ) // sample arrival time

5 for 𝑡 ∈ [𝑎, . . . ,𝑇 ] do
// add to active nodes each timestep 𝑡

6 𝑉𝑡 ← 𝑉𝑡 ∪ {𝑣}

7 𝑉 = 𝑉1 ∪ . . . ∪𝑉𝑇
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Algorithm 4: SampleMotifTypes
input :𝑈𝑡 active triplets

𝑀𝑇 motif types
𝑝𝑀 = (𝑝 (0)

𝑀
, . . . , 𝑝

(3)
𝑀
) proportions motif types,

𝐼𝑇 initial type assignments
output :𝑀𝑡 sampled motifs,

𝑀𝑇 updated motif types
1 begin
2 Shuffle(𝑈𝑡)

// Categorize triplets using type from data

3 𝐵 (3) ←
{
{𝑢, 𝑣,𝑤} ∈ 𝑈𝑡 | 𝐼𝑇 (𝑚) = 3

}
// triangles

4 𝐵 (2) ←
{
{𝑢, 𝑣,𝑤} ∈ 𝑈𝑡 | 𝐼𝑇 (𝑚) = 2

}
// wedges

5 𝐵 (1) ←
{
{𝑢, 𝑣,𝑤} ∈ 𝑈𝑡 | 𝐼𝑇 (𝑚) = 1

}
// edges

6 𝐵 (0) ← 𝑈𝑡 − 𝐵 (1) − 𝐵 (2) − 𝐵 (3) // empty

// Ensure expected proportions

7 𝑛 (𝑖) ← ⌊𝑝 (𝑖)
𝑀
· |𝑈𝑡 |⌋, ∀𝑖 ∈ [1, 2, 3]

// triangles

8 𝐵 (3) , 𝐵 (2) ← AddRemoveBuckets(𝐵 (3) , 𝐵 (2) , 𝑛 (3))
// wedges

9 𝐵 (2) , 𝐵 (1) ← AddRemoveBuckets(𝐵 (2) , 𝐵 (1) , 𝑛 (2))
// 1-edge

10 𝐵 (1) , 𝐵 (0) ← AddRemoveBuckets(𝐵 (1) , 𝐵 (0) , 𝑛 (1))

// Sampled motifs and motif types

11 𝑀𝑡 ← 𝐵 (1) ∪ 𝐵 (2) ∪ 𝐵 (3) // motifs with edges

12 𝑀𝑇 ({𝑢, 𝑣,𝑤}) ← 𝑖, ∀𝑖 ∈ [1, 2, 3], ∀{𝑢, 𝑣,𝑤} ∈ 𝐵 (𝑖)

Algorithm 5: AddRemoveBuckets

input :𝐵𝐿, 𝐵𝑅 triplet sets (left, right)
𝑛𝐿 desired proportion for 𝐵𝐿

output :𝐵𝐿, 𝐵𝑅 updated sets
1 begin
2 if |𝐵𝐿 | > 𝑛𝐿 then

// Send extra triplets to 𝐵𝑅

3 𝐵𝑅 ← 𝐵𝑅 ∪ {𝐵𝐿( 𝑗) , ∀𝑗 ∈ [𝑛𝐿, . . . , |𝐵
𝐿 |]}

4 𝐵𝐿 ← 𝐵𝐿 − 𝐵𝑅

5 else if |𝐵𝐿 | < 𝑛𝐿 then
// Add triplets from 𝐵𝑅

6 𝐵𝐿 ← 𝐵𝐿 ∪ {𝐵𝑅( 𝑗) , ∀𝑗 ∈ [1, · · · , 𝑛𝐿 − |𝐵
𝐿 |]}

7 𝐵𝑅 ← 𝐵𝑅 − 𝐵𝐿

Algorithm 6: SampleMotifEdges
input :𝑀𝑡 active triplets

𝑀𝑇 motif types
𝐼𝑇 initial type assignments
𝐼𝐸 initial edge placements

output :𝑀𝐸
𝑡 motif edges

1 begin
2 for𝑚 = {𝑢, 𝑣,𝑤} ∈ 𝑀𝑡 do
3 𝑛𝑢𝑚 ← abs(𝐼𝑇 (𝑚) −𝑀𝑇 (𝑚))
4 if 𝑀𝑇 (𝑚) < 𝐼𝑇 (𝑚) then // add edges

5 𝑐ℎ𝑜𝑖𝑐𝑒𝑠 ←
({𝑢,𝑣,𝑤 }

2
)
− 𝐼𝐸 (𝑚)

6 𝑀𝐸
𝑡 (𝑚).append

(
RandomChoice(𝑐ℎ𝑜𝑖𝑐𝑒𝑠, 𝑛𝑢𝑚)

)
7 else if 𝑀𝑇 (𝑚) > 𝐼𝑇 (𝑚) then // remove edges

8 𝑐ℎ𝑜𝑖𝑐𝑒𝑠 ←
({𝑢,𝑣,𝑤 }

2
)
− 𝐼𝐸 (𝑚)

9 𝑀𝐸
𝑡 (𝑚).remove

(
RandomChoice(𝑐ℎ𝑜𝑖𝑐𝑒𝑠, 𝑛𝑢𝑚)

)

Algorithm 7: SampleMotifTimestamps
input :𝑡 timestep triplets become active

𝑀𝑡 sampled motifs
𝑀𝑇 motif types
𝜆𝑀 = (𝜆 (1)

𝑀
, . . . , 𝜆

(3)
𝑀
) rates distribution

output :𝑀𝑆
𝑡 motif timestamps

1 begin
2 for {𝑢, 𝑣,𝑤} ∈ 𝑀𝑡 do
3 𝑖 ← 𝑀𝑇

(
{𝑢, 𝑣,𝑤}

)
// motif type

// sample inter-arrival rate

4 𝛽𝑀
(
{𝑢, 𝑣,𝑤}

)
∼ 𝐸𝑥𝑝

(
𝜆
(𝑖)
𝑀

)
5 𝜆𝑀

(
{𝑢, 𝑣,𝑤}

)
← 1

𝛽𝑀 ( {𝑢,𝑣,𝑤 })
6 𝑝𝑟𝑒𝑣 ← 𝑡 // first time motif can appear

// sample inter-arrival time

7 𝑛𝑒𝑥𝑡 ∼ 𝐸𝑥𝑝
(
𝜆𝑀

(
{𝑢, 𝑣,𝑤}

) )
8 while 𝑝𝑟𝑒𝑣 + 𝑛𝑒𝑥𝑡 < 𝑇 do

// save timestamp to list

9 𝑀𝑆
𝑡

(
{𝑢, 𝑣,𝑤}

)
.append(𝑝𝑟𝑒𝑣 + 𝑛𝑒𝑥𝑡)

10 𝑝𝑟𝑒𝑣 ← 𝑝𝑟𝑒𝑣 + 𝑛𝑒𝑥𝑡
// sample next inter-arrival time

11 𝑛𝑒𝑥𝑡 ∼ 𝐸𝑥𝑝
(
𝜆𝑀

(
{𝑢, 𝑣,𝑤}

) )
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