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ABSTRACT

The most important networks from different domains—such as Computing, Organiza-

tion, Economic, Social, Academic, and Biology—are networks that change over time. For

example, in an organization there are email and collaboration networks (e.g., different people

or teams working on a document). Apart from the connectivity of the networks changing

over time, they can contain attributes such as the topic of an email or message, contents of

a document, or the interests of a person in an academic citation or a social network. Ana-

lyzing these dynamic networks can be critical in decision-making processes. For instance, in

an organization, getting insight into how people from different teams collaborate, provides

important information that can be used to optimize workflows.

Network generative models provide a way to study and analyze networks. For example,

benchmarking model performance and generalization in tasks like node classification, can

be done by evaluating models on synthetic networks generated with varying structure and

attribute correlation. In this work, we begin by presenting our systemic study of the im-

pact that graph structure and attribute auto-correlation on the task of node classification

using collective inference. This is the first time such an extensive study has been done. We

take advantage of a recently developed method that samples attributed networks—although

static—with varying network structure jointly with correlated attributes. We find that the

graph connectivity that contributes to the network auto-correlation (i.e., the local relation-

ships of nodes) and density have the highest impact on the performance of collective inference

methods.

Most of the literature to date has focused on static representations of networks, partially

due to the difficulty of finding readily-available datasets of dynamic networks. Dynamic

network generative models can bridge this gap by generating synthetic graphs similar to

observed real-world networks. Given that motifs have been established as building blocks

for the structure of real-world networks, modeling them can help to generate the graph

structure seen and capture correlations in node connections and activity. Therefore, we

continue with a study of motif evolution in dynamic temporal graphs. Our key insight is

that motifs rarely change configurations in fast-changing dynamic networks (e.g. wedges into

12



triangles, and vice-versa), but rather keep reappearing at different times while keeping the

same configuration. This finding motivates the generative process of our proposed models,

using temporal motifs as building blocks, that generates dynamic graphs with links that

appear and disappear over time.

Our first proposed model generates dynamic networks based on motif-activity and the

roles that nodes play in a motif. For example, a wedge is sampled based on the likelihood

of one node having the role of hub with the two other nodes being the spokes. Our model

learns all parameters from observed data, with the goal of producing synthetic graphs with

similar graph structure and node behavior. We find that using motifs and node roles helps

our model generate the more complex structures and the temporal node behavior seen in

real-world dynamic networks.

After observing that using motif node-roles helps to capture the changing local structure

and behavior of nodes, we extend our work to also consider the attributes generated by nodes’

activities. We propose a second generative model for attributed dynamic networks that (i)

captures network structure dynamics through temporal motifs, and (ii) extends the structural

roles of nodes in motifs to roles that generate content embeddings. Our new proposed model

is the first to generate synthetic dynamic networks and sample content embeddings based on

motif node roles. To the best of our knowledge, it is the only attributed dynamic network

model that can generate new content embeddings—not observed in the input graph, but still

similar to that of the input graph. Our results show that modeling the network attributes

with higher-order structures (e.g., motifs) improves the quality of the networks generated.

The generative models proposed address the difficulty of finding readily-available datasets

of dynamic networks—attributed or not. This work will also allow others to: (i) generate

networks that they can share without divulging individual’s private data, (ii) benchmark

model performance, and (iii) explore model generalization on a broader range of conditions,

among other uses. Finally, the evaluation measures proposed will elucidate models, allowing

fellow researchers to push forward in these domains.

13



1. INTRODUCTION

Complex systems and the data they produce can be difficult to understand. Networks,

a necessary abstraction for complex systems and relational data, are pervasive in many

domains such as social, biological, computing, and communication. This abstraction consists

of representing elements of the system as nodes and using links to portray relationships

between pairs of nodes. These networks provide insights into the underlying structures and

behaviors that shape our interconnected world. For instance, a social network can illustrate

friendships between people, a communication network can denote messages sent and received

between people or devices, and a biological network can represent protein interactions.

These systems are dynamic and undergo continuous evolution, with nodes and edges con-

stantly being added or removed. For example, in social networks, users establish or remove

connections with each other through actions like following, mentioning, and replying. The

networks may also contain correlated attributes such as the topic of a message in a commu-

nication network or the hobbies and interests of a person in a social network. Moreover, the

attributes of users, such as textual features in their generated content, might also change

over time. For instance, in the context of academic co-authorship networks, researchers

seek collaborators (represented as neighboring nodes) who possess similar or complementary

knowledge, and the content generated is the papers they co-author. Their personal research

interests may evolve based on new collaborations. These dynamics—social links and user

attributes—may influence each other, introducing a complex and valuable area of study.

We can study complex systems using graph generative models to understand the under-

lying mechanisms that produce the observed data. They can generate new and synthetic

data from a few parameters and a specified generative process. Generating synthetic graphs

is useful for evaluating other tasks on a wider range of graphs when there might be lack

of enough real-world data, or sharing without divulging private data. For example, bench-

marking model performance and generalization in tasks like node classification, can be done

by evaluating models on synthetic networks generated with varying structure and attribute

correlation.

14



Until recently, existing graph generative models have represented complex systems as

being static by using a snapshot of the network structure at one particular point in time.

Current temporal graph generative models have either focused on the aggregate structure

over time (i.e., when a link is formed it will remain permanently), or can only generate the

structure at the next time-window for an existing network. Additionally, existing models

for generating attributed graphs have also focused on static graphs. Whereas, in reality, the

majority of these networks possess dynamic properties.

Furthermore, modeling motifs as building blocks can help to generate the graph structure

seen on real-world networks, and potentially capture correlations in node connections and

activity in dynamic networks. However, in the literature, motifs have been studied in the

context of growing temporal networks, where links are aggregated over time. In the context

of dynamic networks, motifs have been modeled to produce the next time time-window of an

observed graph, and cannot produce entirely synthetic networks. The main challenge that

motif-based generative models face, when generating synthetic data, is sampling the initial

time-window and motif placement.

Finally, when generating synthetic data, we need metrics that measure how well a model

can reproduce the real data. Presently, as more synthetic generative models are proposed,

there is a need to develop evaluation metrics tailored for dynamic networks. Such metrics

ought to evaluate the changing graph structure, behavior of nodes and attributes in dynamic

networks.

1.1 Research Questions

Developing dynamic network generative models that create realistic synthetic graphs and

evaluating these models poses some challenges. The first is incorporating higher-order graph

structure with temporal dynamics. The second is also taking into account the behavior

of individual nodes. The third is including the attributes generated by interactions on

networks. The last challenge is designing evaluation metrics for model comparison that take

into account all three challenges previously stated.
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1. With respect to using synthetic graphs for model evaluation on other tasks: We in-

vestigate how graph structure and attributes affect performance of collective inference

models for node classification. We generate a wide-range of synthetic graphs with

varying structure and attributes. These synthetic graphs are used to determine what

structure statistics, along with the level of attribute auto-correlation, are the best

predictors of the performance for the collective classification models.

2. With respect to dynamic network generative models:

(a) On temporal graphs, we investigate the usefulness of temporal motifs for modeling

dynamic networks. First, we inspect the evolution of motif configurations over

time. Second, we consider the inter-arrival times of observed motifs for modeling

the changing structure. Third, we examine the roles of nodes in different motif

configurations for motif participation and edge placement. Lastly, we propose

how to adequately evaluate dynamic network generative models that produce

synthetic graphs.

(b) On attributed temporal graphs, we investigate the usefulness of motif node-roles

on attributed activity for modeling dynamic networks with content. First, we

consider the use of node role and content embeddings for motif participation and

placement. Second, we examine how to extend motif node-roles to roles that

generate content. Lastly, we propose an evaluation methodology that includes

measures for content topics and embeddings.

1.2 Main Hypothesis and Proposed Research

The goal of this dissertation is to verify the following hypotheses:

1. With regard to the impact of graph structure and attributes on collective classifica-

tion: As attribute correlation and/or link density increases, the accuracy of collective

classification models increases.

2. With regard to dynamic network generative models:
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(a) On temporal graphs: (1) If the motif edge placement if known, then modeling

inter-arrivals from a Poisson distribution creates the changing graph structure

similar to the observed input graph. (2) Using motif node-roles for motif place-

ment, creates underlying graph structure and node behavior similar to the input

graph.

(b) On attributed temporal graphs: Modeling node roles and their attributes can

generate synthetic graphs with dynamic structure similar to the observed input

graph.

1.2.1 Proposed Research

This dissertation is divided into three components:

1. The first part is a model to predict the accuracy of collective classification models from

graph structure statistics and attribute auto-correlation.

2. The second part is a dynamic network generative model combining motif activity and

node roles, along with a model evaluation strategy.

3. The third is an attributed dynamic network generative model, extending node roles to

roles that generate content embeddings, and an evaluation methodology for attributed

interactions.

The rest of this document is organized as follows: First, we introduce the background

of important concepts and methods in  Chapter 2  . Then, we present a systematic study

of how graph structure and attribute auto-correlation impacts the accuracy of collective

classification models in  Chapter 3  . In  Chapter 4  , we investigate motif evolution on dynamic

graphs, propose a synthetic graph generative model from temporal motifs and node roles,

and present a model evaluation strategy. Afterwards, in  Chapter 5 , we outline our proposed

generative method for attributed dynamic networks and evaluation measures for generated

attributes. Finally,  Chapter 6  has a summary highlighting the contributions and implications

of the works proposed here and outlining future directions.
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2. BACKGROUND

2.1 Data Definitions

Definition 2.1.1 (Static Graph). A graph G is defined as G = (V, E), where V is the set

of nodes and E is the set of edges.

Definition 2.1.2 (Attributed Static Graph). An attributed static graph G is defined as

G = (V, E, X), where V is the set of nodes, E is the set of edges, and X contains the node

(or edge) attributes.

Definition 2.1.3 (Graph Snapshot). A graph snapshot is a time-slice of a network at time

t, defined as Gt = (Vt, Et, St), where Vt ⊆ V is the set of active nodes, Et ⊆ E is the set of

edges at time t, and St ⊆ S are the edge timestamps.

Definition 2.1.4 (Dynamic Network). A dynamic network G = {G1, . . . , GT} is a sequence

of graph time-slices (or snapshots), where T is the number of timesteps.

Definition 2.1.5 (Aggregate Temporal Graph). An aggregate graph is the union of all graph

snapshots and defined as GA = (V, E, S), where V = V1 ∪ . . . ∪ VT is the set of all nodes,

E = E1 ∪ . . . ∪ ET is the set of all edges, and S contains the timestamps for all edges.

Definition 2.1.6 (Attributed Graph Snapshot). An attributed graph snapshot is a time-slice

of a network at time t, defined as Gt = (V, Et, Xt), where V is the set of nodes, Et is the set

of edges at time t, and Xt is the set of attributes at time t.

Definition 2.1.7 (Attributed Dynamic Network). An attributed dynamic network G =

{G1, . . . , GT} is a sequence of graph time-slices (or snapshots), where each time-slice Gt is

an attributed graph snapshot and T is the number of timesteps.

2.2 Task Definitions

2.2.1 Graph Generation

Generative graph models are used to produce synthetic graphs in order to study complex

systems from a wide range of domains, such as social, biological, computing and communica-
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tion networks. Ideally, they can generate graphs with the properties observed in real-world

networks.

Static Graph Generation

The problem of static graph generation is formally defined as:

Problem 1. Static Graph Generation

Input 1. A graph G = (V, E).

Output 1. A graph G′ = (V, E ′), where V is the set of nodes, E ′ is the set of edges, and

the graph structure of G′ matches G.

In the Erdős-Rényi (ER) random graph model [ 1 ], G(N, p), edges are formed indepen-

dently with probability p among N nodes. The WattsStrogatz (WS) random graph model

[ 2 ] produces graphs with short average path lengths and high clustering (small-world prop-

erties) as observed in social networks. The Barabási-Albert (BA) model [  3 ] incorporates

growth and preferential attachment (i.e., new nodes are more likely to connect with high

degree nodes) and generates random scale-free networks (unlike the ER and WS models).

The family of Exponential Random Graph Models (ERGMs) p∗ [ 4 ,  5 ], where p1 is the ER

model, have a probability distribution on all possible networks with N nodes. The Chung-Lu

(CL) model [ 6 ] is a degree-preserving model developed to create graphs with specified degree

distributions similar to real-world networks. Transitive Chung-Lu (TCL) [  7 ] is an extension

to the CL model that adds triangle closures to create clustering.

Blockmodels partition the set of nodes V into subsets (blocks) so that the block structure

and pattern of edges captures the graph structural properties [ 8 ]. Stochastic Blockmodels

(SBM) [  9 – 12 ] extend blockmodeling with a probability distribution that is invariant under

permutations of nodes within blocks. The Mixed Membership Stochastic Blockmodel [ 13 ]

associates each unit of observation with multiple clusters rather than a single cluster, via a

membership probability-like vector.

Random Dot Product Graph Model [  14 – 16 ] assigns to each vertex a vector in Rd and

then any edge is present with probability equal to the dot product of the endpoints. The
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Kronecker Product Graph Model (KPGM) [  17 ] is based on a matrix operation (Kronecker

product) produces networks with fractal structure. The mixed-Kronecker Product Graph

Model (mKPGM) [ 18 ,  19 ] extends KPGM to capture the level of clustering observed in many

networks.

More recently, deep graph neural networks have received a lot of attention for their

ability to model realistic graphs. Graph auto-encoders aim at representing nodes into low-

dimensional vectors. Graph Convolutional Networks (GCNs) use the connectivity of the

graph as a filter to execute neighborhood aggregation for node embeddings. The Variational

Graph Auto-Encoder (VGAE) model [ 20 ] uses GCNs to encode nodes in the graph and a

simple decoder to reconstruct the adjacency matrix.

Generative adversarial networks (GANs) [ 21 ] can approximate hidden probability dis-

tributions using a competitive learning process in which one neural network generates a

sample, and a second neural network attempts to discriminate between synthetic samples

and examples drawn from the real distribution. GraphGAN [  22 ] model tries to fit, for a

given node, its underlying true connectivity distribution over all other vertices and produces

“fake” samples to fool the discriminative model. NetGAN [  23 ] poses the problem of graph

generation as learning the distribution of biased random walks over the input graph. Graph

Recurrent Neural Network (GraphRNN) [ 24 ] is a deep auto-regressive model. GraphRNN

trains on a set of graphs and breaks down the graph generation process into a sequence of

node and edge formations, conditioned on the graph structure generated so far.

Attributed Graph Generation

The problem of attributed graph generation is formally defined as:

Problem 2. Attributed Graph Generation

Input 2. A graph G = (V, E, X).

Output 2. A graph G′ = (V, E ′, X ′), with node set V , edge set E ′ and mode attributes X ′,

where the graph structure and attribute auto-correlation of G′ matches G.
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The Multiplicative Attribute Graphs (MAG) Model [  25 ] generalizes and uses node at-

tributes to better model the structural properties found in real world networks. MAG is a

latent space network model, where nodes have some discrete or continuous latent attributes

and the probability of two nodes forming an edge depends on their latent attribute values.

The Attributed Graph Model (AGM) [ 26 ] combines structure and attributes independently

in a proposal distribution by first sampling the node attributes and then using a generative

network model to sample attributed edges. Constrained Sampling for Attributed Graphs

(CSAG) [  27 ] samples from the joint distribution of structure and attributes to generate

networks with correlated attributes.

2.2.2 Node Classification

For the task of node classification, we typically have as input a partially labeled graph

and wish to infer the missing labels. The problem is formally defined as follows:

Problem 3. Node Classification

Input 3. An attributed graph G = (V, E, X), with node set V and edge set E, where X

contains attributes only for a subset of nodes.

Output 3. An attributed graph G = (V, E, X̂), where X̂ ⊃ X contains the attribute labels

for all nodes.

Collective Inference Approaches

Collective inference have recently been used to significantly improve the predictive accu-

racy of node classifications in network domains [ 28 ]. These models exploit network correlation

between the attribute values of linked nodes to improve classification accuracy. The collec-

tive classification models in [  29 ] consist of a local model, that classifies individual nodes,

and a global model, which propagates the predicted binary labels. Collective classification

methods have also been adapted to the multi-label case [ 30 ]. Deep Collective Inference (DCI)

[ 31 ], a more recently proposed model, takes advantage of recent advances in deep learning

and achieves reductions in classification error.
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Node Representation

The goal of node embedding is to project nodes into a low-dimensional vector that sum-

marizes their graph position and the structure of their local neighborhood. An encoder

maps each node to a low-dimensional vector (embedding) and a decoder deduces structural

information about the graph from the learned embeddings.

Random walk approaches learn the embedding from random walk statistics. The mo-

tivation is to optimize the embeddings so nodes that tend to co-occur on short random

walks have similar embeddings. DeepWalk [ 32 ] and node2vec [  33 ] use a shallow embedding

(i.e., the encoder is an embedding lookup function) and a decoder based on the inner prod-

uct. The main difference is that node2vec allows for a flexible definition of random walks,

whereas DeepWalk uses simple unbiased random walks on the graph. struct2vec [  34 ] learns

representations that capture the structural similarities (or isomorphisms) between nodes,

independent of their global graph positions.

Large-scale Information Network Embedding (LINE) [  35 ] is not based on random walks,

but is often compared with DeepWalk and node2vec. LINE has two encoder-decoder objec-

tives that optimize “first order” (1-hop neighborhood) and “second order” (2-hop neighbor-

hood) node similarity, instead of combining them in fixed-length random walks.

The Graph Neural Network (GNN) model [  36 ] extends existing neural network meth-

ods for relational data in graph domains by mapping graphs and their nodes into an m-

dimensional Euclidean space. Structural Deep Network Embedding (SDNE) [  37 ] directly

incorporates graph structure into the encoder by compressing information about a node’s

local neighborhood. SDNE can only generate embeddings for nodes that were present dur-

ing the training [ 38 ]. GraphSAGE [ 39 ] aggregate feature information from a node’s local

neighborhood, such as the degrees or text attributes for example.

22



3. IMPACT OF GRAPH STRUCTURE AND ATTRIBUTE

CORRELATION ON COLLECTIVE INFERENCE METHODS

3.1 Introduction

Relational machine learning and collective inference have recently been used to signifi-

cantly improve the predictive accuracy of node classifications in network domains [  29 ]. These

models exploit network correlation between the attribute values of linked nodes to improve

classification accuracy. For example, in social networks a pair of linked friends is more likely

to share the same political views than two randomly selected people. Machine learning meth-

ods that automatically identify network correlation patterns in observed network data and

then use them in a collective (i.e., joint) inference process to propagate predictions through-

out the network, have been used successfully across a range of network domains, from social

networks to physical and biological networks.

Collective classification methods (e.g., [  40 ]) take advantage of homophily (i.e., the princi-

ple that links between similar people occurs at a higher rate than among dissimilar people).

Many collective classification models consist of local model templates that are “rolled out”

over the heterogeneous network structure for learning and inference. Thus the local model

structure (e.g., attribute correlation across links) may interact with the network structure

(e.g., graph connectivity) to impact the accuracy we can obtain using collective classification.

The range of empirical evaluation in the field has indicated that network structure and

network autocorrelation impact the performance of collective classification models. However,

this is based on observations from a limited set of real world networks available for study.

There has been some work using synthetic data to systematically study model performance as

data characteristics are varied, but the complexity of generating realistic network structures

made it difficult to consider characteristics jointly. Specifically, Sen et al. [  41 ] study some of

the effects of varying link density and local homophily on classification accuracy. However,

in their work one of the metrics is “fixed” while the other is varied. Thus there are still

open questions about how both characteristics jointly impact performance. Moreover, there

are many other graph and attribute characteristics that could be impacting accuracy of the

various methods as well.
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The goal of this work is to investigate the following open questions: (1) How do attribute

correlation and link density jointly affect the accuracy of collective classification? (2) Are

there other graph/attribute measures that can help determine the accuracy of collective

classification methods? (3) In which scenarios is it better to learn a model vs. simple label

propagation?

In our work, we exploit a recently developed method for sampling attribute networks

with realistic network structure (i.e., parameters learned from real networks) and correlated

attributes [ 27 ]. Using synthetic data generated from the model, we conduct a systemic study

of relational learning and collective inference methods to investigate how graph characteristic

interact with attribute correlation to impact classification accuracy. Specifically, we jointly

vary the label correlation and link density in order to study these effects simultaneously,

something that wasn’t possible in prior work.

Our results show that link density and attribute correlation are the characteristics that

best describe the changes in accuracy of collective classification. As one of them or both

increase, the accuracy of collective classification increases too. Notably, we find that AUC

performance can be accurately predicted with a linear function of link density and attribute

correlation. Finally, as we have more labeled data available, it is better to learn a model vs.

doing simple label propagation.

3.2 Related Work

Macskassy and Provost [ 29 ] explore various collective classification methods with homo-

geneous, univariate networks (the class label is the only attribute). They outline the two

main components for collective classification, which are the collective inference method and

the relational classifier. In particular, they show results on available datasets and compare

how the combination of components from methods in the literature, as well as percentages

of labeled data in training, affect the accuracy of the predictions.

Previously there had been no large-scale, systematic experimental study of machine learn-

ing methods for within-network classification. Some of the obstacles for such a systematic

study are that many learning algorithms can be separated into subcomponents (ideally, the

24



contributions of such subcomponents should be assessed). For collective inference methods,

they study commonly used approximate inference algorithms: the iterative classification al-

gorithm (ICA), relaxation labeling (RL) and gibbs sampling (GS). For relational classifiers,

they studied weighted-vote relational neighbor (WVRN), class-distribution relational neigh-

bor (CDRN), network-only naïve Bayes (NBC) and network-only link-based classification

(NLB). Although the authors address that angle, they do not explore how the network-

characteristics of the datasets used impact the results of collective classification methods.

P. Sen, G. Namata, M. Bilgic et al. [  41 ] study of some of the effects of varying link den-

sity and the local homophily. For collective inference methods, they study commonly used

approximate inference algorithms: the iterative classification algorithm (ICA) and gibbs sam-

pling (GS). For relational classifiers, they studied naïve Bayes (NB) and Logistic Regression

(LR). In their results, they show that when homophily in the graph was low, both content-

only (CO) and collective classification (CC) algorithms performed equally well, which was

expected result based on similar work. As they increased the amount of homophily (leaving

link density fixed), all CC algorithms drastically improved their performance over CO clas-

sifiers. Finally, as they increased the link density of the graphs (leaving correlation fixed),

accuracies for all CC algorithms went up, possibly because the relational information be-

came more significant and useful. In future work, the authors state that they believe that

a better understanding of when these algorithms perform well will lead to more widespread

application of these algorithms to more real-world tasks and that this should be a subject of

future research.

In this work, we systematically study how network structure and attribute correlation

together affect the performance of CC algorithms. Furthermore, since the proportion of

labeled vertices in the network has been showed to affect the results, we will include it in

the analysis. Our goal is to determine the network structure characteristics that affect CC

the most, along with the attribute correlation and the proportion of labeled vertices, and

characterize their impact in the accuracy of the classifications made. These results may differ

according to the CC subcomponents employed.
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3.3 Problem Statement

The research questions we wish to answer with this work: (1) How do attribute correlation

and link density jointly affect the accuracy of collective classification?, (2) Are there other

graph measures that can help determine the accuracy of collective classification? and (3)

When is it better to learn a model versus doing label propagation (with weighted-voting)?

More formally, we wish to test the following hypothesis: As attribute correlation and/or link

density increases, the accuracy of collective classification models increases.

3.4 Algorithms

Collective classification is the simultaneous prediction of the class of several objects given

the objects’ attributes and their relations.

The experimental setup is similar to that of Macskassy et al. [ 29 ], where there is a single

attribute Xi of a vertex vi, representing the class, can take a binary value – for two classes,

X = {0, 1}. Here, c refers to a non-specified class value.

Given a graph G = (V, E, X) where Xi is the (single) attribute of vertex vi ∈ V, and

given known values xi for some subset of vertices VK , we infer the values xi of Xi for the

remaining unknown vertices, VU = V−VK , or a probability distribution over those values.

Given Ni (1-hop neighborhood of vertex vi), a relational model can be used to estimate

xi. It is worth noting that just like estimates of the labels of N U
i influence the estimate for

xi, then xi also influences the estimates of the labels of vj ∈ N U
i . In order to simultaneously

estimate these interdependent values xU , we need to apply a collective inference method as

well.

3.4.1 Relational Classifiers

The relational model makes use of the relation in the network as well as the values of

attributes of related entities, possibly through long chains of relations.
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Given GK (the graph with known labels), the relational classifier returns a model MR

that will estimate xi using vi and Ni. Ideally, MR will estimate a probability distribution

over the possible values for xi.

Weighted-voting

Also referred to as weighted-vote relational neighbor classifier (WVRN) [  29 ], it is the

simplest classifier that estimates class-membership probabilities by assuming the existence

of homophily.

Given vi ∈ VU , WVRN estimates P (xi | Ni) as the (weighted) mean of the class-

membership probabilities in Ni:

P (xi = c | Ni) = 1
Z

∑
vj∈Ni

wij · P (xj = c | Nj), (3.1)

where Z is the usual normalizer. This can be viewed simply as an inference procedure,

or as a probability model.

Relational Naive Bayes

Also referred to as network-only bayes classifier (NBC) [ 29 ], it uses multinomial naive

Bayesian classification based on the classes of vi’s neighbors.

P (xi = c | Ni) = P (Ni | c) · P (c)
P (Ni)

, (3.2)

where

P (Ni | c) = 1
Z

∏
vj∈Ni

P (xj = x̃j | xi = c)wij

where Z is a normalizing constant and x̃j is the class observed at node vj. As usual,

because P (Ni) is the same for all classes, normalization across the classes allows us to avoid

explicitly computing it. Laplace smoothing is applied with m = |X| (i.e., the number of

classes).
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Relational Logistic Regression

This classifier is based similar to the approach of Lu and Getoor [ 42 ] and Macskassy and

Provost [  29 ]. The relational part consists of creating a feature vector of aggregated labels for

a node’s 1-hop neighborhood. In particular, the feature vector ~fi for a node vi ∈ VU consists

of the unnormalized class label counts and ratio of class labels of the neighbors.

Then, a logistic regression classifier (LR) is used to build a discriminative model based

on these feature vectors. The learned model is then applied to estimate P (xi = c | Ni).

3.4.2 Collective Inference Methods

The collective inference component determines how the unknown values are estimated

together, possibly influencing each other.

Given a graph G possibly with some xi known, a set of prior estimates for xU , and a

relational model MR, this module applies collective inferencing to estimate xU .

The initialization of class probabilities can be done in several ways: (1) using a local

classifier (which only uses the attributes of the vertex vi), (2) randomly initializing with

the class prior (as in the case of Gibbs Sampling). The probability is computed using the

relational model MR. Finally, the probability for the vertex vi is updated at each iteration

step according to the collective inference method’s update step.

Gibbs Sampling

The update step here is to sample a class label with the probability given by the relational

model MR.

The above outlined iteration is repeated 200 times without keeping any statistics–this

is known as the burnin period. Then, it is repeated for a maximum of 2000 iterations.

Counting the number of times each Xi is assigned a particular value c ∈ X. Normalizing

these counts forms the final class probability estimates. [ 29 ]
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Relaxation Labeling

The update step here is to estimate the class membership probabilities as follows:

ĉi
(t+1) = β(t+1) ·MR(v(t)

i ) + (1− β(t+1)) · ĉi
(t), where

β0 = k, and β(t+1) = β(t) · α

and where t is the current iteration, k is a constant between 0 and 1, which is set to 1.0, and

α is a decay constant, which is set to 0.99, following the experimental setup by Macskassy

et al. [  29 ] Lastly, the maximum number of iterations for this method is set to 100.

3.5 Data

Using the recent work of Robles et al. [  27 ] on Sampling of Attributed Networks From

Hierarchical Generative Models, we can generate attributed networks with varying network

structure and attribute dependence. Their CSAG method, which is implemented using

mixed Kronecker Product Graph Models (mKPGM), samples networks from a hierarchical

generative network model (GNM) and constrains every step of the sampling process to

consider the structure of the GNM in order to bias the search to regions of the space with

higher likelihood. This allows to generate networks with both correlated attributes and

complex structure.

CSAG is a new method to approximate sampling from structure and attributes P (G, X)

using mKPGM models in the proposal distribution. CSAG is a 2-stage constrained sampling

method from a distribution Q′ ∼ P : it first samples a set of blocks from a region of feasibility

and then samples edges from the selected block-space. CSAG is applicable to mKPGM and

other models.

In the first dataset of networks generated, we start from the same θ initiatior matrix for

mKPGM [ 18 ]—used to determine edge probabilities between vertices— in Equation Eq. ( 3.3 ),

and vary the individual θs in small increments to increase the link density.
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θ =

0.7466 0.6629

0.6629 0.1402

 (3.3)

To vary the level of attribute correlation, we simply vary a parameter passed to the

CSAG generative method. We generated 168 networks from the θ in Equation Eq. ( 3.3 ).

To corroborate that the results we obtained from using the θ initiatior matrix in Equation

Eq. (  3.3 ), we also created a second set of networks from a combination of possible values

for each individual θ in the initiator matrix. The resulting θ initiatior matrix is shown in

Equation Eq. (  3.4 ). We generated 401 networks from using these θs:

θ =

θ11 θ12

θ21 θ22

 (3.4)

where θ11 ∈ {0.99, 0.95, 0.9, 0.85, 0.8}, θ12 ∈ {0.55, 0.45,

0.35, 0.25, 0.15} and θ22 ∈ {0.75, 0.65, 0.55, 0.45, 0.35}. The values for θ11, θ12, θ22 were picked

by making θ11 to be the largest value to enforce identifiability [  43 ] and making θ21 = θ12

to create undirected graphs [ 18 ]. The theta in Equation Eq. ( 3.3 ) was also derived in this

manner, following these relationships in the values which are also seen in learned parameters

from real-world data [  18 ]. All the graphs created have one binary label per vertex for the

attributes, with balanced classes across the graph, and the edges are all weighted the same

(i.e., wij = 1 ∀ eij ∈ E).

3.6 Methodology

Experiment 1

We wish to study how the results of collective classification are affected by: (1) graph

characteristics, (2) attribute characteristics, (3) collective classification methods, and (4)

percentage of available node labels in the “bootstrapping” [  41 ] of the predictions. By ex-

ploring these characteristics, we can obtain a better understanding of the conditions needed
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to obtain good results using collective classification. This understanding will be particularly

useful for employing these methods with real data.

For the learning step, the size of the training set in the experiments will be varied among

20%, 50%, and 80% using cross-validation. The relational model MR is learned from the folds

used for training (i.e. VK). In the classification step, some existing background knowledge

is needed to be able to get good results [  29 ]. Therefore, we will use the vertices from VK

(the vertices with known labels) as background knowledge.

To assess the contributions for the different subcomponents, we perform the experiments

on all combinations of the collective inference methods with the classifiers, as described in

 Section 3.3 .

With the generated networks, we will be able to measure the quality of the predictions

made by different collective classification methods using the area under the ROC curve

(AUC). Another aspect of the performance that we will evaluate, is how the percentage

of available node labels in the “bootstrapping” [ 41 ] of the predictions can also impact the

results we observe.

Likewise, although we will vary parameters such as link density and correlation for the

generation of networks, different θ initiator matrices for mKPGM will affect network struc-

ture. Therefore, additional networks were generated by varying the θ initiator matrix values,

as previously described in  Section 3.5 .

In regards to the graph and attribute characteristics previously mentioned, some graph

characteristics that could be affecting the quality of the predictions and we study are: (1)

link density, (2) clustering coefficient, (3) average path length, (4) size of the largest con-

nected component, (5) average node degree, (6) s-metric value of the network [  44 ], and (7)

eigengap of the two largest eigenvalues. For attribute characteristics, we studied the follow-

ing: (1) 1-hop neighborhood class correlation (i.e., Pearson correlation coefficient), (2) 2-hop

neighborhood class correlation, (3) average class entropy, (4) baseline autocorrelation due to

random chance.
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Experiment 2

To compare the difference of learning a model versus doing label propagation, we plotted

the increase in AUC scores of the NBC over WVRN. We show the resulting plots for the

results from Experiment 1, where RL is used as the collective inference method.

Experiment 3

To answer our third question—when is it better to learn a model versus doing label prop-

agation?—we need to characterize the impact of the (1) proportion of labeled vertices (for

bootstrapping), (2) graph density, and (3) attribute correlation, in the resulting AUC scores

obtained with collective classification. Thus, we learned a linear regression model on the

CC results so that we can predict the AUC score for CC depending on the three previously

mentioned characteristics of the input graph. We included these three characteristics as the

features for the model and we predict the AUC score. Our input here are the graph char-

acteristics used for Experiment 1, as features, and the resulting AUC score, for the linear

regression task. We used 5-fold cross-validation to evaluate the model. We learned three

versions of the model, (1) for all networks (that we generated in Section 5) and for those

with (2) positive correlation only, and (3) negative correlation only.

3.7 Results

In the Figures for Experiments 1 and 2, the small circles represent a graph generated

with the given metric (e.g., correlation) and value on the y-axis, and the given metric (e.g.,

link density in  Figure 3.3 and clustering coefficient in  Figure 3.2 ) and value on the x-axis.

The space is filled with color according to the AUC score using the score of the nearest points

(i.e., graphs). In particular, this is done by finding the convex hull [ 45 ,  46 ] of all points and

then doing a Delaunay triangulation to separate the spaces for coloring according to the

AUC score.
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Experiment 1

In the experiments for the first set of networks from the θ in Equation Eq. (  3.3 ), it seems

that the characteristics that jointly affect the AUC scores in a monotonic manner are the

1-hop attribute correlation combined with the link-density (See  Figure 3.3  ). The results and

plots (omitted for space) for the second set of networks from the θ in Equation Eq. (  3.4 ),

exhibit the same behavior to those of the first θ in Equation Eq. (  3.3 ). NBC performs well

with higher correlation (positive or negative) or density. WVRN performs well with higher

correlation (positive) or density. LR performed poorly with the relational features used; the

AUC scores were near random and the plots are omitted for space.

From the rest of combinations of attribute characteristics and graph characteristics, the

1-hop attribute correlation combined with the clustering coefficient seems to also have a

relationship behaving similar to the previous results, although it does not seem completely

monotonic (See  Figure 3.2 ). Another combination of characteristics that seems to have a

relation with the AUC score, is the 1-hop attribute correlation and eigengap of the two largest

eigenvalues. In particular, if you take a look at  Figures 3.6d  and  3.6h , as there are more

labeled nodes available for “bootstrapping”, the eigengap has more impact on the scores.

The rest of the graph characteristics we evaluated, did not have a monotonic relationship

with any of the attribute characteristics (See  Figures 3.5 and  3.6 , for sample plots).

Experiment 2

As observed in Figure  3.4 , learning a model (NBC) performs better for negative correla-

tion so this is the area where we see the most gain in AUC scores. There are also some gains

when the networks have positive correlation and we have more training data available.

Experiment 3

 Table 3.1  lists the mean accuracy obtained on the cross-validation folds (as determined by

absolute error) of predicting the AUC scores, using networks generated from θ ( Equation 3.3  ).

We can most accurately predict the AUC scores when the collective inference method is
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Table 3.1. Mean Accuracy of Predicting Collective Classification AUC Scores
Network Samples NBC+RL NBC+GS WVRN+RL WVRN+GS
All 36% 18% 15% 14%
Positive Correlation 80% 66% 91% 91%
Negative Correlation 86% 86% 90% 90%

relaxation labeling (RL). WVRN is a simple classifier, and thus the collective inference

method does not have an effect on how well we can predict the AUC score. In Figure  3.1 , note

that the coefficient for the density feature is much larger in part due to the densities being

very small proportions compared to the other features (i.e., the features are not normalized).
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Figure 3.1. Linear Regression Coefficients

3.8 Discussion

Experiment 1. Some observations from the results in  Figure 3.3  : (1) The weighted-

voting classifier does not learn (it assumes homophily) and thus cannot model negative

correlation. Therefore, it needs high (positive) correlation and high density to work well. (2)
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Logistic regression needs more correlation to linearly separate classes; Naive Bayes is signifi-

cantly more accurate on these networks. (3) Relaxation labeling often performs better than

Gibbs sampling. (4) At least 20-30% correlation is needed to improve accuracy, depending

on the graph density (5) When there is low density, a higher correlation is needed to learn

a better model; As density increases, lower correlation can achieve similar results.

Regarding our hypothesis, the results indicate that: as attribute correlation and/or link

density increases, the accuracy of collective classification models also increases. The signif-

icance of this is that even if we have lower levels of label autocorrelation, if our network is

more dense then we can achieve higher accuracy.

Experiment 2. Furthermore, as we have more labeled data (known vertices) it is better

to learn a model like NBC versus doing label propagation with WVRN, as observed in

 Figure 3.4 .

Experiment 3. We have also shown, in  Figure 3.1  and  Table 3.1  , that it is possible

to predict the AUC score we can obtain with CC methods. The significance of this is that

with the learned linear regression coefficients for a CC method on some networks, we can

just predict the AUC score and use this to pick the CC method that will likely perform the

best for a particular network. In  Figure 3.1  , it is interesting that (1) when predicting AUC

scores for NBC, we have more accuracy in the learned model for negative correlation, than

for positive correlation, and (2) for WVRN the proportion of labeled vertices has almost no

impact.
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3.9 Additional Figures
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(b) WVRN+RL, 50% Train.
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(c) WVRN+RL, 80% Train.
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(d) NBC+RL, 20% Train.
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(f) NBC+RL, 80% Train.

Figure 3.2. Attribute Correlation (1-hop) vs Clustering Coefficient
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(b) WVRN+GS, 50% Train.
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(c) WVRN+GS, 80% Train.
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(d) WVRN+RL, 20% Train.
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(e) WVRN+RL, 50% Train.
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(f) WVRN+RL, 80% Train.
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(g) NBC+GS, 20% Train.
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(h) NBC+GS, 50% Train.
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(i) NBC+GS, 80% Train.
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(j) NBC+RL, 20% Train.
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(k) NBC+RL, 50% Train.
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(l) NBC+RL, 80% Train.

Figure 3.3. Attribute Correlation (1-hop) vs Link-Density

37



0.005 0.010 0.015 0.020 0.025 0.030

density

0.6

0.4

0.2

0.0

0.2

0.4

0.6

co
rr

e
la

ti
o
n

GS (Train 20%)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
U

C
 s

co
re

(a) GS, 20% Train. Set

0.005 0.010 0.015 0.020 0.025 0.030

density

0.6

0.4

0.2

0.0

0.2

0.4

0.6

co
rr

e
la

ti
o
n

GS (Train 50%)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
U

C
 s

co
re

(b) GS, 50% Train. Set
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(c) GS, 80% Train. Set
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Figure 3.4. Difference of learning a model: 1-hop Attribute Correlation vs Density
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Figure 3.5. AUC Scores on various metrics without learning a model
(WVRN+RL, 50% Training Set)
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Figure 3.6. AUC Scores on various metrics with a learned model
(NBC+RL, 50% Training Set)
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4. DYNAMIC NETWORK GENERATIVE MODEL FROM

TEMPORAL MOTIF-ACTIVITY AND NODE-ROLES

4.1 Introduction

Networks are a way to study complex systems from a wide range of domains, such as

social, biological, computing and communication networks. Generating synthetic networks

is useful for evaluating other tasks on a wide range of graph structure or sharing without

divulging private data, for example. Historically, complex networks with temporal attributes

have been studied as static graphs by modeling them as growing networks or aggregating

temporal data into one graph. In reality, most of these networks are dynamic in nature

and evolve over time, with nodes and edges constantly being added and removed. Many

generative models for static graphs have aimed to generate synthetic graphs that can simulate

real-world networks. Random graph models were among the first proposed [ 1 ]. They were

adapted to produce degree distributions similar to those of social networks, but still failed

to generate the clustering of real-world networks [  4 ,  6 ]. Block models were later proposed

for creating communities observed in social networks [  12 ,  17 ,  47 ]. However, these methods

focus on capturing either global or local graph properties, but not both. Initial models for

temporal or dynamic networks (where links appear and disappear, such as social-network

communication patterns) focused on modeling the edges over time, ignoring higher-order

structures [  48 – 50 ]. Although traditionally most graph models have been edge-based, motifs

have been established as building blocks for the structure of networks [  51 ]. Modeling motifs

can help to generate the graph structure seen on real-world networks and capture correlations

in node connections and activity. Following work that studied the evolution of graphs using

higher-order structures (or motifs) [  52 – 56 ], a generative model using temporal motifs was

proposed, which produces networks where links are aggregated over time [ 57 ]. However, their

approach assumes that edges will not be removed once they are placed.

In this work, we propose a dynamic network model, using temporal motifs as building

blocks, that generates dynamic graphs with links that appear and disappear over time.

First, we go over related work and discuss where our model fits in  Section 4.2 . Then in

 Section 4.3  , we present our empirical study of the evolution of motifs in temporal graphs. In
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this initial study, we observed that motifs did not change configurations from on timestep

to another, rather they kept re-appearing after the first time. Motivated by this finding,

we propose DYnamic MOtif-NoDes (DYMOND), a generative model that first assigns a

motif configuration (or motif type) and then samples inter-arrival times for the motifs. One

challenge that comes with it is sampling the motif placement. To this end, we define motif

node roles and use them calculate the probability of each motif type. The motifs and node

roles can capture correlations in node connections and activity. We describe our DYMOND

generative model in more detail on  Section 4.4 . Another key challenge is how to evaluate

dynamic graph models? Previous work has focused on evaluating models using the structure

metrics defined for static graphs without incorporating measures that reflect the temporal

behavior of the network. In  Section 4.5  , we describe how to adapt the metrics to consider

temporal structure and node behavior. We evaluate our model on five datasets against three

other baseline models. We show in our results that our model generates dynamic networks

with the closest graph structure to the real data and with similar node behavior. Finally,

we discuss the results of our evaluation and present our conclusions.

4.2 Related Work

Most models for temporal or dynamic networks have focused on modeling the edges

over time, such as [  48 – 50 ]. A straightforward approach to generating temporal networks

is to generate first a static graph from some model, and for each link generate a sequence

of contacts [ 58 ]. Holme [  49 ] uses an approach where they draw degrees from a probability

distribution and match the nodes in random pairs for placing links. Then, for every link, they

generate an active interval duration from a truncated power-law distribution and uniform

random starting time within that time frame. Rocha and Blondel [ 50 ] use a similar method

where the active interval of a node starts when another node’s interval ends. Another

approach is to start with an empty graph. Then, for every node make it active according to

a probability and connect it to m random nodes. Perra et al. [  59 ] use a truncated power-law

distribution for each node’s probability of being active. Laurent et al. [ 60 ] extend this model

to include memory driven interactions and cyclic closure. Other extensions include aging
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effects [  61 ] and lifetimes of links [ 62 ]. Vestergard et al. [  63 ] model nodes and links as being

active or inactive using temporal memory effects. Nonetheless, all these node and edge-based

models do not consider higher-order structures and fail to create enough clustering in the

networks generated.

Motivated by the work that established motifs have as building blocks for the structure

of networks [  51 ], the definition of motifs was extended to temporal networks by having all

the edges in a given motif occur inside a time period [  52 ,  54 ,  55 ]. Zhang et al. [ 53 ] study

the evolution of motifs in temporal networks by looking at changes in bipartite motifs in

subsequent timesteps. Benson et al. [  56 ] study higher-order networks and how 3-node motifs

evolve from being empty to becoming a triangle in aggregated temporal graphs. Purohit et al.

[ 57 ] propose a generative model for synthetic temporal networks where links are aggregated

over time (i.e., no link deletions). Zhou et al. [  64 ] propose a dynamic graph neural network

model that takes into account higher-order structure by using node-biased temporal random

walks to learn the network topology and temporal dependencies.

4.3 Empirical Study

The work of [  56 ] showed the evolution of motifs (e.g., wedges becoming triangles) in

growing temporal networks. In this initial study, we investigated if this motif behavior occurs

in the evolution of dynamic networks when subsequent time windows are considered (e.g.,

if the motifs appear, merge, split and/or disappear over time). Specifically, we investigated

3-node motifs and looked for changes from one motif type to another (for example, wedges

becoming triangles and vice-versa).

4.3.1 Motif Evolution

The work of [  56 ] showed the evolution of motifs in growing temporal networks (e.g.,

wedges becoming triangles). In this study, we investigated if this motif behavior occurs

in dynamic networks across subsequent time windows (e.g., if the motifs appear, merge,

split and/or disappear over time). Specifically, we investigated 3-node motifs and looked
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(a) Enron Emails (b) EU Emails (c) Wikipedia Links

Figure 4.1. Motif Transition Probabilities

for changes from one motif type to another (for example, wedges becoming triangles and

vice-versa).

4.3.2 Definitions

Definition 4.3.1 (Graph Snapshot). A graph snapshot is a time-slice of a network at time

t, defined as Gt = (Vt, Et, St), where Vt ⊆ V is the set of active nodes, Et ⊆ E is the set of

edges at time t, and St ⊆ S are the edge timestamps.

Definition 4.3.2 (Dynamic Network). A dynamic network G = {G1, . . . , GT} is a sequence

of graph time-slices (or snapshots), where T is the number of timesteps.

Definition 4.3.3 (Motif). We define a motif as a 3-node subgraph {u, v, w} and its motif

type is determined by the number of edges between the nodes (i.e., empty has 0, 1-edge has

1, wedge has 2, triangle has 3).

The rest of notations and symbols for this chapter are summarized in  Table 4.4  .

4.3.3 Empirical Study

We tested the hypothesis that motifs changing configurations was driven by a time-

homogeneous Markov process where the graph structure at the next timestep t + 1 depends

on the current timestep t. Each timestep corresponds to a time window of the temporal
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graph. Then, we consider all 3-node motifs at each timestep to either transform from one

motif type to another or remain the same, and isomorphisms are combined into the same

configuration.

We studied the effectiveness of this approach on the Enron Emails and EU Emails

datasets, described in  Subsection 4.5.2  . Additionally, we used a Wikipedia Links which

shows the evolution of hyperlinks between Wikipedia articles [ 65 ,  66 ]. The nodes represent

articles. Edges include timestamps and indicate that a hyperlink was added or removed

depending on the edge weight (-1 for removal and +1 for addition). The transition proba-

bility matrices for both email datasets (Enron Emails and EU Emails) show that the motifs

with edges (i.e., 1-edge, wedge, and triangle) will either keep their current motif type, or

become empty with almost equal probability (  Figures 4.1a and  4.1b ). For each motif type

with edges, the count of staying is very close to the count of becoming empty at the next

time period. In contrast, for the Wikipedia dataset, the graph keeps growing with more links

between articles being added and very few removed. This makes it unlikely to see any motif

with edges becoming empty ( Figure 4.1c ).

In these datasets: (1) we did not observe motifs with edges changing from one motif type

to another (e.g., wedges becoming triangles and vice-versa), even when picking different time

windows to create the timesteps, and (2) motifs stay with the same type or disappear in

the next time window. We also compared modeling edges versus motifs and found that

modeling the inter-arrival times of motifs, with an Exponential distribution, retained the

graph clustering. This motivates us to propose a motif-based generative model for dynamic

networks, which we will outline next.

4.4 DYnamic MOtif-NoDes Model

We formally define the problem of dynamic graph generation as follows:

Problem 4. Dynamic Network Generation

Input 4. A dynamic network G = {G1, . . . , GT}
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Output 4. A dynamic network G′ = {G′
1, . . . , G′

T ′}, where the distribution of graph structure

for G′ matches G and the node behavior of a specific node vi in G′ should be similar to a

specific node vi′ in G.

Specifically, consider an arbitrary graph statistic s(G) (e.g., average path length). Then the

distribution of statistic values observed in the input dynamic network sin = {s(G1), . . . , s(GT )}

should match the distribution of statistic values observed in the output dynamic network

sout = {s(G′
1), . . . , s(G′

T ′)}. Similarly, take any node statistic s(vi | G) (e.g., node degree).

Then, using the temporal distribution of values for a node s(vi |G) = {s(vi |G1), . . . , s(vi |GT )},

the distribution of values for all nodes in the input dynamic network {s(vj | G)}j∈G should

match the distribution of values for all nodes in the output dynamic network {s(vj′ |G′)}j′∈G′ .

To generate dynamic networks as specified above, we propose the DYnamic MOtif-NoDes

(DYMOND) generative model. The model makes the following assumptions about the graph

generative process:

1. nodes in the graph become active and remain that way,

2. nodes have a probability distribution over role types that they play in motifs,

3. triplets have a single motif type over time,

4. there is a distribution of motif types over the set of graphs,

5. motif occurrences over time are distributed exponentially with varying rate

First we describe the DYMOND generative process below. Then we describe our approach

to estimate model parameters from an observed dynamic network. We model the time until

nodes become active as Exponential random variables with the same rate λV . Since all

possible 3-node motifs are considered, there will be edges shared among them. Therefore, to

estimate the inter-arrival rate for each motif, we weigh the count of times a motif appeared

by the number of edges shared with other motifs in a timestep. For each motif type with

edges (i.e., triangle, wedge, and 1-edge), the model fits an Exponential distribution with the

motif inter-arrival rates of that type. Motivated by our findings in  Subsection 4.3.3 , when a

motif is first sampled it will keep the same configuration in the future.
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Figure 4.2. Motif Types and Node Roles

In the generation process, the motifs are sampled from a probability distribution based

on the probability of the nodes of a triplet participating in a particular motif type, while also

ensuring the motif type proportions in the graph are maintained. The motif type probability

for a triplet considers the roles each node would play in a motif. For example, in a wedge

one node would be a hub and the other two would be spokes (  Figure 4.2 ). The node-roles

probabilities are learned from the input graph’s structure and the motifs that the node

participates in.

The motivation for this modeling approach is based on: (1) by modeling higher-order

structures (i.e., motifs), the model will capture the underlying distribution of graph structure,

and (2) by using the motif roles that nodes take in the dynamic network, the model will also

capture correlations in node connections and activity.

4.4.1 Generative Process

The overall sampling procedure is described in  Algorithm 1  : In  line 2  , we first get the

nodes that are active at each timestep using the node arrival rate λV (see  Algorithm 4  ).

Whenever new nodes become active, we calculate the new triplets of active nodes that are

now eligible to be sampled as a motif in  line 5  . In  line 6  , we proceed to sample the motifs,

based on the node role probabilities pR for each motif types, and also the timesteps they will

appear using the motif inter-arrival rates λM (see  Algorithm 2 ).

In  Algorithm 2  :  Line 4 , the model calculates the expected count of motifs n(i) to be

sampled for each motif type i using the motif type proportions pM . Then in  line 5 , the

expected number of motifs for each type is sampled, given the probability pT that the nodes
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Algorithm 1: SampleDynamicGraph
input : T num. of timesteps to generate,

N num. of nodes,
λV rate at which nodes become active,
pM = (p(0)

M , . . . , p
(3)
M ) proportions motif types,

λM = (λ(1)
M , . . . , λ

(3)
M ) rates of inter-arrival rates,

pR node roles probabilities,
cR node roles counts

output: G′ = {G1, . . . , GT}, where Gt = (Vt, Et, St)
1 begin

// Get active nodes at each timestep t
2 V ← GetActiveNodes(T, N, λV )
3 M ← ∅, MS ← ∅, ME ← ∅
4 for t ∈ [1, . . . , T ] do

// New active triplets at timestep t
5 Ut ← {{u, v, w} ⊆ Vt : {u, v, w} /∈ Ut−1}
6 Mt, MT

t , MS
t , MR

t , pR, cR ← SampleMotifs(Ut, pM , λM ,pR, cR)
7 M ←M ∪Mt // save new motifs
8 ME

t ← PlaceMotifEdges(Mt, MT ,MR
t )

9 MT ←MT ∪MT
t // store their types

10 ME ←ME ∪ME
t // store their edges

11 MS ←MS ∪MS
t // store their timestamps

12 G′ ← ConstructGraph(M, ME, MS)

in the triplet take on the roles needed ( Equation 4.6  ). Each node will have an expected

count cR of times they will show having each role, for the total number of timesteps T to be

generated. For this reason, in  line 8  we sample the timesteps each motif will appear in, and

in  line 10  we use the timestep counts for sampling the node roles (see  Algorithm 3  ).
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Algorithm 2: SampleMotifs
input : Ut active triplets at time t

pM proportions of each motif type
λM = (λ(1)

M , . . . , λ
(3)
M ) rates of inter-arrival rates,

pR node roles probabilities,
cR node roles counts

output: Mt sampled motifs,
MT

t motif types,
MS

t motif timestamps,
MR

t motif node roles
pR node roles probabilities,
cR node roles counts

1 begin
2 L := Ut // triplets to sample from
3 for i ∈ [3, 2, 1] do
4 n(i) := |Ut| · p(i)

M // num. motifs to sample
// sample motifs

5 M (i) ∼Mult

([
{u, v, w} ∈ L 7→ p

(i)
T ({u,v,w})∑

{u′,v′,w′}∈L
p

(i)
T ({u′,v′,w′})

]
, n(i)

)
6 MT

t :=
[
{u′, v′, w′} ∈M (i) 7→ i

]
// store motif types

7 L := L−M (i) // remaining triplets to sample from

8 S(i) ← SampleMotifTimesteps(t, M (i), i, λM)
9 M (i)′ :=

{
{u′, v′, w′} ∈M (i) : |S(i)({u′, v′, w′})| > 0

}
10 R(i), pR, cR ← SampleNodeRoles(M (i)′

, i, pR, cR, S(i))
11 Mt ←Mt ∪M (i)′

12 MS
t ←MS

t ∪ S(i)

13 MR
t ←MR

t ∪R(i)
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Algorithm 3: SampleNodeRoles
input : M (i)′ motifs type i

pR node roles probabilities
S(i) motif timesteps

output: R(i) node roles for motifs in M (i)′

pR updated role probabilities
cR updated role counts

1 begin
2 for m ∈M (i)′ do
3 if i = 3 then // triangle
4 R(i)(m, equal3)← m

5 cR(v, equal3) −=
∣∣∣S(i)(m)

∣∣∣, ∀v ∈ m

6 else if i = 2 then // wedge

7 ph =
[
v ∈ m 7→ pR(v, hub)∑

v′∈m
pR(v′, hub)

]
// hub node

8 vh ∼ Bin(m, ph)
9 R(i)(m, hub)← vh

10 cR(vh, hub) −=
∣∣∣S(i)(m)

∣∣∣
11 R(i)(m, spoke)← m \ {vh} // spoke nodes
12 cR(v, spoke) −=

∣∣∣S(i)(m)
∣∣∣, ∀{v ∈ m : v 6= vh}

13 else if i = 1 then // 1-edge

14 po =
[
v ∈ m 7→ pR(v, outlier)∑

v′∈m
pR(v, outlier)

]
// outlier node

15 vo ∼ Bin(m, po)
16 R(i)(m, outlier)← vo

17 cR(vo, outlier) −=
∣∣∣S(i)(m)

∣∣∣
18 R(i)(m, equal2)← m \ {vo} // equal2 nodes
19 cR(v, equal2) −=

∣∣∣S(i)(m)
∣∣∣, ∀{v ∈ m : v 6= vo}

20 for v ∈ m do // update role distr (  Equation 4.7  )
21 pR(v, role) = P [v is role], ∀r ∈ R
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4.4.2 Learning

Given an observed dynamic graph G, we estimate the input parameters for our generative

process.

Node Arrivals

We begin by estimating the node arrival rate λ̂V , which will determine when nodes

become active in the dynamic network, by using the first timestep in which each node had

its first edge.

λ̂V =
∑

v∈V

(
arg mint 1(v ∈ Vt)

)
|V |

(4.1)

Motif Proportions

In  Algorithm 8 , we find the motifs in Gt in each time window t. For each 3-node motif

{u, v, w}, we find its motif type i at timestep t ( line 8  ). If we have previously seen {u, v, w}

and the motif type i is of higher order at the current timestep t, then we update the type

stored to be i ( line 13 ). For example, if we observe the triplet {u, v, w} is a triangle at

timestep t and we previously saw it as a wedge, we update MT
(
{u, v, w}

)
as a triangle.

Then, we calculate the motif proportions p̂
(i)
M of each type in the graph, where i corre-

sponds to the number of edges in the motif (i.e., i = 1 for a 1-edge, i = 2 for a wedge, and

i = 3 for a triangle motif).

p̂
(i)
M =

{
{u, v, w} ∈M | MT

(
{u, v, w}

)
= i
}

(
N
3

) , for i ∈ [1, 2, 3]

p̂
(0)
M = 1−

n∑
i=1

p̂
(i)
M (4.2)

where M is the set of motifs, and {u, v, w} is a motif consisting of the nodes u, v, w.
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Motif Inter-Arrivals

We estimate the inter-arrival rates of each observed motif {u, v, w} using weighted edge

counts ( Equation 4.3a ). Their rates are then used to learn a rate of inter-arrival rates λ̂
(i)
M

from the motifs of each type i ( Equation 4.3b  ). Note that we do not need to estimate rates

for the empty motif type (i = 0).

λ̂M

(
{u, v, w}

)
=
∑T

t=1 CM
t

(
{u, v, w}

)
T

(4.3a)

λ̂
(i)
M =

∑
{u,v,w}∈M(i)

(
λ̂M

(
{u, v, w}

))
|M (i)|

(4.3b)

where M (i) is the set of all motifs of type i.

Since edges might be shared by more than one motif, we use edge-weighted Poisson counts

CM
t per timestep t, to estimate the inter-arrival rate for each motif {u, v, w} ( Equation 4.4  ).

The weights W
(i)
t will depend on the motif type i of {u, v, w} and are calculated for each

edge of the motif ( Equation 4.5  ).

CM
t

(
{u, v, w}

)
=

∑
(u′,v′)∈Et

(
{u,v,w}

)W
(i)
t

(
(u′, v′)

)
|Et({u, v, w})| (4.4)

For a motif {u, v, w}, we calculate the weight of its edge (u′, v′) using the count for the

edge in the timestep window and considering its motif type i (  Equation 4.5a  for triangles,

 Equation 4.5c  for wedges, and  Equation 4.5e  for 1-edge motifs). We give larger edge-weight

to motif types with more edges, since they are more likely to produce the observed edges.

This also ensures that motifs types with smaller proportion p
(i)
M ( Equation 4.2 ) have a high

enough inter-arrival rate to show up (i.e., triangles).

W
(3)
t (u′, v′) = ct(u′, v′)

|N (3)(u′, v′)| (4.5a)

r
(2)
t (u′, v′) = max

(
0, ct(u′, v′)−

∣∣∣N (3)(u′, v′)
∣∣∣) (4.5b)
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W
(2)
t (u′, v′) = r

(2)
t (u′, v′)
|N (2)(u′, v′)| (4.5c)

r
(1)
t (u′, v′) = max

(
0, r

(2)
t (u′, v′)−

∣∣∣N (2)(u′, v′)
∣∣∣) (4.5d)

W
(1)
t (u′, v′) = r

(1)
t (u′, v′)
|N (1)(u′, v′)| (4.5e)

where ct(u′, v′) is the number of times (u′, v′) appears in Et and
∣∣∣N (i)(u′, v′)

∣∣∣ is the number

of motifs of type i.

Motif Types

The probability of a triplet becoming a triangle, wedge, or 1-edge motif is based on the

probability that each node takes on the roles needed to form that motif type. The roles for

each motif type are shown in  Figure 4.2  . In detail, a triangle requires all three nodes to have

the equal3 role (  Equation 4.6a  ), a wedge requires one node to be a hub and the rest have

the spoke role (  Equation 4.6b  ), a 1-edge requires two nodes to have the equal2 role and the

remaining one the outlier role ( Equation 4.6c ).

p
(3)
T

(
{u, v, w}

)
= P [u is equal3 ∧ v is equal3 ∧ w is equal3] (4.6a)

p
(2)
T

(
{u, v, w}

)
= P [u is hub ∧ v is spoke ∧ w is spoke]

∨ P [u is spoke ∧ v is hub ∧ w is spoke]

∨ P [u is spoke ∧ v is spoke ∧ w is hub]

(4.6b)

p
(1)
T

(
{u, v, w}

)
= P [u is outlier ∧ v is equal2 ∧ w is equal2]

∨ P [u is equal2 ∧ v is outlier ∧ w is equal2]

∨ P [u is equal1 ∧ v is equal2 ∧ w is outlier]

(4.6c)

P [u is role] = count(u, role)∑
r∈R count(u, r) (4.7)

where R = {equal3, hub, spoke, equal2, outlier} is the set of all possible roles, and count(u, r)

is the weighted count of times that node u had role r (see  Algorithm 9 in  Section 4.10 ). The
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weights are used to avoid over-counting the roles for motifs of the same type with a shared

edge.

4.5 Methodology

4.5.1 Baselines

The related work using motif-based models for temporal graphs focus on the aggre-

gated temporal graph and not its dynamic changes over time [  57 ]. With that in mind,

we picked baselines that aim to model the changes in dynamic graphs. We compare our

model with three baselines: a temporal edge-based model (SNLD), a model based on node-

activity (ADN), and a graph neural network (GNN) model based on temporal random walks

(TagGen).

Static Networks with Link Dynamics Model (SNLD)

We used an approach based on [  49 ], where they begin by generating a static graph

and then generate a series of events. Their procedure begins by sampling degrees from a

probability distribution. They refer to these degrees as “stubs” and they create links by

connecting these “stubs” randomly. Finally, for each link, they assign a time-series from an

inter-event distribution.

In our implementation of the SNLD model, we start by sampling the degrees from a

Truncated Power-law distribution. Since our starting point is a static graph, we assume all

the nodes to be active already. Then, we sample inter-event times for every edge. We found

that we could best model the edge inter-event times in the real data using an Exponential

distribution. To learn the Truncated Power-law parameters, we aggregated and simplified

the real graph.

Activity-Driven Network Model (ADN)

We use the approach in [ 60 ], which extends the model in [  59 ] by adding memory effects

and triadic closure. The triadic closure takes place when node i connects to node k forming
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a triangle with its current neighbor j. The memory effect is added by counting the number

of times that the nodes have connected up to the current time t. The procedure starts

by creating an empty graph Gt at each timestep. Then, for each node i: delete it with

probability pd or mark it as active with probability ai. If the node is “deleted”, then the

edges in the current timestep are removed, the counts of connections set to zero, and another

degree is sampled to estimate a new ai. If a node i is sampled as active, we connect it to

either: (1) a neighbor j, (2) a neighbor of j, or (3) a random node.

In our implementation of the SNLD model, we base the probability to create new edges

ai on the degree of node i, which we sample from a Truncated Power-law distribution. We

estimate the parameters using the average degree across timesteps for the nodes in the real

graph. There is a fixed probability pd for any node being “deleted” (losing its previous

connections memory and sampling a new ai). We estimate this probability using the average

ratio of nodes becoming disconnected in the next timestep. To estimate the probability for

triadic closure (forming a triangle), we use the average global clustering coefficient across

timesteps.

TagGen

TagGen is a deep graph generative model for dynamic networks [ 64 ]. In their learning pro-

cess they treat the data as a temporal interaction network, where the network is represented

as a collection of temporal edges and each node is associated with multiple timestamped

edges at different timestamps. It trains a bi-level self-attention mechanism with local opera-

tions (addition and deletions of temporal edges), to model and generate synthetic temporal

random walks for assembling temporal interaction networks. Lastly, a discriminator selects

generated temporal random walks that are plausible in the input data, and feeds them into

an assembling module. We used the available implementation of TagGen to learn the param-

eters from the input graph and assemble the dynamic network using the generated temporal

walks  

1
 .

1
 ↑ https://github.com/davidchouzdw/TagGen
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4.5.2 Datasets

We use the datasets described below, with more detailed statistics shown in  Table 4.1  

and  Figure 4.5 .

Table 4.1. Statistics of the Dynamic Network Datasets
Dataset |V | |E| Unique Timesteps
Enron Emails 785 5,794 2,517 20
EU Emails 784 68,091 6,878 79
DNC Emails 1,579 33,378 3,911 23
Facebook Wall-Posts 2,245 23,507 4,976 43
CollegeMsg 1,083 34,328 5,589 31

Enron Emails

The Enron dataset is a network of emails sent between employees of Enron Corporation

[ 66 ,  67 ]. Nodes in the network are individual employees and edges are individual emails.

Since it is possible to send an email to oneself, loops were removed.

EU Emails

The EU dataset is an email communication network of a large, undisclosed European

institution [  66 ,  68 ]. Nodes represent individual persons and edges indicate at least one email

has been sent from one person to the other. All edges are simple and spam emails have been

removed from the dataset.

DNC Emails

The DNC dataset is the network of emails of the Democratic National Committee that

were leaked in 2016 [  66 ,  69 ]. The Democratic National Committee (DNC) is the formal

governing body for the United States Democratic Party. Nodes in the network correspond

to persons and an edge denotes an email between two people. Since an email can have any

number of recipients, a single email is mapped to multiple edges in this dataset.
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Facebook Wall-Posts

The Facebook dataset is a network of a small subset of posts to other users’ wall on

Facebook [  66 ,  70 ]. The nodes of the network are Facebook users, and each directed edge

represents one post, linking the users writing a post to the users whose wall the post is

written on. Since users may write multiple posts on a wall, the network allows multiple

edges connecting a single node pair. Since users may write on their own wall, loops were

removed.

CollegeMsg

The CollegeMsg dataset is comprised of private messages sent on an online social network

at the University of California, Irvine [ 71 ,  72 ]. Users could search for other users in the

network, based on profile information, and then begin conversation. An edge (j, k, t) means

that user j sent a private message to user k at time t.

4.5.3 Evaluation

We estimate initial motif configurations and all parameters of our DYMOND model as

described in  Subsection 4.4.2  from dataset graphs. Similarly, we estimate all parameters of

the SNLD and ADN baselines as described in  Subsection 4.5.1  . For the TagGen baseline, we

use the available implementation from [ 64 ], which is generally described in  Subsection 4.5.1  .

Graph Structure

To compare the graph structure generated by the models against the real data, we use

the following graph metrics: density, average local clustering coefficient, global clustering

coefficient, average path length of largest connected component (LCC), and s-metric. Density

measures ratio of edges in the graph versus the number of edges if it were a complete graph.

The local clustering coefficient quantifies the tendency of the nodes of a graph to cluster

together, and the global clustering coefficient measures the ratio of closed triplets (triangles)

to open and closed triplets (wedges and triangles). The average (shortest) path length, for
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all possible pairs of nodes, measures the efficiency of information transport. The s-metric

measures the extent to which a graph has hub-like structure [  44 ].

We calculate the graph structure metrics for each generated graph snapshot G′
t and the

input graph. Given that we want to model the distribution of graph structure, and not just

generate the same graph sequence, we calculate the Kolmogorov-Smirnov (KS) test statistic

for each metric and evaluate G′ against G. We use the KS test because it does not make

assumptions about the distribution of the data and it can capture variability or dispersion

in the data (which cannot be done by looking at average or median values only).

Node Behavior

To compare the temporal node behavior of the generated graphs against the datasets, we

use the following node-aligned metrics: temporal degree distribution, clustering coefficient,

closeness centrality, activity rate, and the size of its connected component. The temporal

degree distribution of a node u is the set of degrees of u over all snapshots Gt. The local

clustering coefficient of a node measures how close its neighbors are to becoming a clique.

The closeness centrality of a node u in a (possibly) disconnected graph is the sum of the

reciprocal of shortest path distances to u over all other reachable nodes. The activity rate

of a node measures how often it participates in an edge. The connected component size of a

node u is the number of nodes in the same connected component.

To evaluate node behavior, we calculate the node-aligned temporal metrics for every node

in the dataset G and in the generated graphs G′. When we refer to node-aligned, we mean

that each node will have a distribution of values over time s(vi |G) = {s(vi |G1), . . . , s(vi |GT )}

for each metric s. Since the nodes in G do not necessarily correspond to those in G′, we

consider the inter-quartile range (IQR) of values over time {s(vj | G)}j∈G. We then perform

a 2-dimensional KS test using the Q1 and Q3 values of all nodes in G and G′. In this way,

we capture each node’s individual behavior and their joint behavior.
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(a) Graph Structure Metrics (b) Node Behavior Metrics

Figure 4.3. EU Emails - KS statistics

4.6 Results

In  Figure 4.3  , we show the KS statistic (lower is better) for the graph structure and node

behavior of the EU Emails dataset, as an example. The full set of results of all the other

datasets, for the five graph metrics and the five node metrics, are in . In order to compare

the models more easily, we calculated the mean reciprocal rank (MRR) of the KS statistic

for the graph structure and the node behavior metrics. To calculate the MRR, we ranked

the model results by using the average KS statistic.

In  Table 4.2 , we can observe that our DYMOND model outperforms the baselines when

considering all the graph structure metrics together using the MRR (higher is better).

Table 4.2. Graph Structure Mean Reciprocal Rank
Model Enron EU DNC Facebook CollegeMsg
DYMOND 0.57 1.00 0.80 0.77 0.90
SNLD 0.52 0.61 0.29 0.47 0.45
ADN 0.46 0.67 0.34 0.50 0.43
TagGen 0.53 0.58 0.64 0.30 0.30

In  Table 4.3 , our model performs best on the node behavior for two of the datasets (Enron

Emails and Facebook). SNLD performs better on the EU Emails dataset, with our model
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being a close second, and the CollegeMsg dataset. Finally, ADN performs best on the DNC

Emails dataset.

Table 4.3. Node Behavior Metrics Mean Reciprocal Rank
Model Enron EU DNC Facebook CollegeMsg
DYMOND 0.93 0.70 0.50 0.85 0.48
SNLD 0.40 0.73 0.35 0.65 0.95
ADN 0.47 0.37 0.93 0.42 0.48
TagGen 0.25 0.25 0.27 0.25 0.25

4.6.1 Discussion

SNLD creates a static graph with a degree distribution learned from the input graph and

models the edge inter-event times independently. This fails to create graph structure similar

to the datasets due to little clustering. The CollegeMsg dataset has low clustering (local and

global) but high s-metric, which indicates large star structure in the graph (i.e., high degree

nodes), as seen in  Figure 4.5 . In this case, SNLD is able to match better the clustering than

the other datasets (  Figure 4.6h ).

ADN models node activation rates using sampled node degrees from a Power-law distri-

bution. However, during sampling a node might be “deleted” and have their rate changed.

When evaluating node-aligned metrics over time, these rate modifications will change the

behavior of a node. This explains the poor performance of ADN on the node activity rates

metric of all the datasets (  Figures 4.6b  ,  4.6d ,  4.6f and  4.6h ) except the EU Emails dataset

( Figure 4.3b ). Lastly, this model incorporates a triadic closure mechanism to create clus-

tering in the graph structure, which actually helps it perform better on datasets with high

clustering ( Figure 4.6d )

Though TagGen doesn’t perform well on most of the graph structure metrics, it manages

to create graph clustering comparable to our model in three of the datasets: Enron Emails,

DNC Emails, and Facebook (  Figures 4.6a ,  4.6c and  4.6e ). These three datasets have various

star structures (very high degree nodes) across timesteps and shorter diameter than the other

datasets. TagGen performs biased temporal random walks and, according to the authors,
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high degree nodes tend to be highly active resulting in a weak dependence between the

topology and temporal neighborhoods. This would explain why it performs better in these

three datasets than the others.

Using motifs helps our DYMOND model create better clustering in the graph than the

other baselines (  Figures 4.6a  ,  4.6e and  4.6g ), which also impacts the graph density and

s-metric that is generated. The motif inter-arrival times are able to capture the node-

aligned behavior in the graph  Figures 4.6b ,  4.6d and  4.6f ). The addition of motif node

roles determines the placement of the motifs in the graph, which in turn impacts the node

closeness and shortest path lengths produced. These roles also help capture the node-aligned

temporal degree distribution even though we do not directly optimize it.

4.7 Scalability Analysis

For conciseness, in this section we use V as the number of nodes, E as the number of

edges, M as the number of motifs, and Ut as the number of new triplets, where the subscript

t denotes the timestep.

The time complexity of DYMOND parameter estimation is dominated by the number of

motifs in the input graph. In the worst case, the number of 3-node motifs is all combinations

of 3 nodes. We only consider connected motifs (  Figure 4.2 ), which can be found by iterating

over the edges at each graph snapshot t (i.e., O(V 2 ·T )). In practice, most real-world graphs

are very sparse so the time complexity of finding the motifs is O(E · V · T ).

The time complexity of the DYMOND generative process is dependent upon the motif

sampling from the new triplets Ut. In the worst case, all nodes become active at the same

time and the number of new triplets is Ut =
(

V
3

)
, which would result in O(V 3) time. In

practice, the number of connected 3-node motifs M is proportional to the number of nodes

and edges (i.e., E · V ≤ M < V 3). To analyze the time complexity of sampling motifs, we

recorded the number of node arrivals over time and calculated the number of new active

triplets Ut available to sample from ( Figure 4.4  ). The orange line in the plot, shows how Ut

evolves to the theoretical complexity
(

V
3

)
. We calculate Ut at each timestep as the 3-node
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triplets we have not considered before (i.e., Ut =
(

Vt

3

)
+
(

Vt

2

)
·Vt−1 +

(
Vt−1

2

)
·Vt), substantially

reducing the time complexity.

Figure 4.4. Number of triplets to sample from

4.8 Concluding Remarks

Our proposed dynamic-graph generative model, DYnamic MOtif-NoDes (DYMOND),

not only considers the dynamic changes in overall graph structure using temporal motif

activity, but also considers the roles the nodes play in motifs (e.g., one node plays the hub

role in a wedge, while the remaining two act as spokes). In our empirical study of dynamic

networks, we demonstrated that motifs with edges: (1) do not change configurations (e.g.,

wedges becoming triangles and vice-versa); (2) once they appear, they will stay during

the next time window or disappear. We also developed a novel methodology for comparing

dynamic-graph generative models and measuring how well they capture the underlying graph

structure distribution and the node behavior of a real graph. Specifically, using node-aligned

metrics over the graph snapshots helps to evaluate the node’s topological connectivity and

temporal activity. We note that using motifs helps our DYMOND model create better

graph structure overall, while the motif node roles can better represent the temporal node

behavior. Our quantitative evaluation of graph structure and node behavior is performed
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on five different real-world datasets. DYMOND is the first motif-based dynamic network

generative model and, through the use of motif node roles, it creates realistic graph structure

and node behavior.
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4.9 Additional Tables and Figures

Figure 4.5. Dataset Graph Structure Metrics
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(a) Enron: Graph Structure Metrics (b) Enron: Node Behavior Metrics

(c) DNC: Graph Structure Metrics (d) DNC: Node Behavior Metrics

(e) Facebook: Graph Structure Metrics (f) Facebook: Node Behavior Metrics

(g) CollegeMsg: Graph Structure Metrics (h) CollegeMsg: Node Behavior Metrics

Figure 4.6. KS statistic of Graph Structure Metrics
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Table 4.4. Notations and Symbols
Symbol Description
G = {G1, . . . , GT} dynamic temporal network
t ∈ [1, . . . , T ] timestep (time-window)
Gt = (Vt, Et, St) graph snapshot at time t
Vt ⊆ V set of active nodes at timestep t
Et ⊆ E set of edges at timestep t

St

(
(u, v)

)
list of timestamps for edge (u, v)

M set of motifs
MT motif types
ME motif edges
MS motif timesteps
ct(u′, v′) num. times times (u′, v′) ∈ Et∣∣∣N (i)(u′, v′)

∣∣∣ num. of motifs type i

4.10 Additional Algorithms

Algorithm 4: GetActiveNodes
input : T num. of timesteps

N num. of nodes
λV node arrival rate

output: V active nodes per timestep
1 begin
2 Vt ← ∅, ∀j ∈ [1, . . . , T ]
3 for v ∈ [1, . . . , N ] do
4 a ∼ Exp(λV ) // sample arrival time
5 for t ∈ [a, . . . , T ] do

// add to active nodes each timestep t
6 Vt ← Vt ∪ {v}

7 V = V1 ∪ . . . ∪ VT
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Algorithm 5: SampleMotifTimesteps
input : t timestep triplets become active

Mt sampled motifs
MT motif types
λM = (λ(1)

M , . . . , λ
(3)
M ) rates distribution

output: MS
t motif timestamps

1 begin
2 for {u, v, w} ∈Mt do
3 i←MT

(
{u, v, w}

)
// motif type

// sample inter-arrival rate
4 βM

(
{u, v, w}

)
∼ Exp

(
λ

(i)
M

)
5 λM

(
{u, v, w}

)
← 1

βM ({u,v,w})
6 prev ← t // first time motif can appear

// sample inter-arrival time
7 next ∼ Exp

(
λM

(
{u, v, w}

))
8 while prev + next < T do

// save timestamp to list
9 MS

t

(
{u, v, w}

)
.append(prev + next)

10 prev ← prev + next
// sample next inter-arrival time

11 next ∼ Exp
(
λM

(
{u, v, w}

))

Algorithm 6: PlaceMotifEdges
input : Mt sampled motifs

MT
t motif types

MR
t motif node roles

output: ME
t edges for motifs in Mt

1 begin
2 for m ∈Mt do
3 if MT

t (m) = 3 then // triangle
4 ME

t (m)←
(

m
2

)
5 else if MT

t (m) = 2 then // wedge
6 h←MR

t (m, hub)
7 s1, s2 ←MR

t (m, spoke)
8 ME

t (m)← {(h, s1), (h, s2)}
9 else if MT

t (m) = 1 then // 1-edge
10 e1, e2 ←MR

t (m, equal2)
11 ME

t (m)← {(e1, e2)}
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Algorithm 7: ConstructGraph
input : M motifs

MS motif timestamps
ME motif edges

output: G′ = {G′
1, . . . , G′

T}, where G′
t = (Vt, Et, St)

1 begin
2 Et ← ∅, ∀t ∈ [1, . . . , T ]
3 Mt :=

{
m ∈M : t ∈MS(m)

}
4 for {u, v, w} ∈Mt do

// Place edges
5 Et ← Et ∪ME

(
{u, v, w}

)
// Add timestamps to edges

6 St :=
[
(u′, v′) ∈ME ({u, v, w}) 7→ t

]

Algorithm 8: GetMotifsGraph
input : G = {G1, . . . , GT} graph to learn from

T num. of timesteps
output: M motifs in G

MT motif types
1 begin
2 M ← ∅; MT ← ∅
3 for t ∈ [1, . . . , T ] do
4 for (u, v) ∈ Et do
5 if u 6= v then
6 for w ∈ Vt do
7 if w 6= u and w 6= v then

// number unique edges is motif type i
8 i :=

∣∣∣ME
(
{u, v, w}

)∣∣∣
9 if {u, v, w} /∈M then

10 M ←M ∪
{
{u, v, w}

}
11 MT

(
{u, v, w}

)
← i

12 else if i > MT
(
{u, v, w}

)
then // prefer higher-order

motif types
13 MT

(
{u, v, w}

)
← i
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Algorithm 9: GetNodeRoleCounts
input : M motifs in G

MT motif types
ME motif edges
CM count times motifs appear
T num. of timesteps

output: count(v, r) node role counts
1 begin
2 count(v, r) = 0, ∀v ∈ V, ∀r ∈ R // init. role counts
3 for t ∈ [1, . . . , T ] do
4 for (u, v) ∈ Et do
5 if |N (3)(u, v)| > 0 then // triangles
6 ω(3) := min(ct(u,v),|N(3)(u,v)|)

|N(3)(u,v)| // role weight triangle

7 for w ∈
(
Nt(u) ∩Nt(v)

)
do

8 for n ∈ [u, v, w] do
9 count(n, equal3) += ω(3)

3

10 if |N (2)(u, v)| > 0 and r
(2)
t (u, v) > 0 then // wedges

11 ω(2) := min(r(2)
t (u,v),|N(2)(u,v)|)

|N(2)(u,v)| // role weight wedge

12 for w ∈
(
Nt(u)⊕Nt(v)

)
do

13 for n ∈ [u, v, w] do
14 r ← GetRoleTimestep(Et, {u, v, w}, n)
15 if r = hub then
16 count(n, hub) += ω(2)

2

17 else
18 count(n, spoke) += ω(2)

19 if |N (1)(u, v)| > 0 and r
(1)
t (u, v) > 0 then // 1-edge

20 ω(1) := min(r(1)
t (u,v),|N(1)(u,v)|)

|N(1)(u,v)| // role weight 1-edge

21 for w ∈
(
V −

(
Nt(u) ∪Nt(v)

))
do

22 for n ∈ [u, v, w] do
23 r ← GetRoleTimestep(Et, {u, v, w}, n)
24 if r = equal2 then
25 count(n, equal2) += min(r(1)

t (u, v), |N (1)(u, v)|)
26 else
27 count(n, outlier) += ω(1)
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5. ATTRIBUTED DYNAMIC NETWORK GENERATIVE

MODEL FROM ATTRIBUTED NODE-ACTIVITY AND ROLES

5.1 Introduction

Graphs are pervasive in our world, serving as valuable tools for studying complex systems

across diverse domains such as social, biological, computing, and communication networks.

These networks provide insights into the underlying structures and behaviors that shape

our interconnected world. Creating synthetic graphs proves beneficial for assessing systems

across diverse structures and information sharing without compromising private data. Previ-

ously, complex networks with temporal characteristics were examined as static graphs, either

by modeling them as growing networks or by consolidating temporal data into a single graph.

In reality, the majority of these networks possess dynamic properties and undergo continuous

evolution, with nodes and edges constantly being added or removed. For instance, in social

networks, users establish or remove connections with each other through actions like follow-

ing, mentioning, and replying. Moreover, the attributes of users, such as textual features in

their generated content, also change. These two dynamics—social links and user attributes—

may influence each other. In the context of academic co-authorship networks, researchers

seek collaborators (represented as neighboring nodes) who possess similar or complementary

knowledge, and the content generated is the papers they co-author. Additionally, their per-

sonal research interests may evolve based on new collaborations. The interplay between the

evolving graph structure and the changing attributes of its nodes introduces a complex and

valuable area of study.

Figure 5.1. Academic Co-authorship Network Example, with graph structure
and attributes/content changing over time
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In this work, we propose DYnamic Attributed Node rolEs (DYANE), a generative model

for dynamic networks with content. Since lengthy content generation is influenced by more

than just network interactions, we focus on modeling content embeddings as node attributes

that evolve over time, influenced by network interactions. We employ temporal motifs as

building blocks of network structure and extend motif node roles for content embedding

generation. The use of motifs and node roles can capture correlations in node connections and

activity. Modeling the network content embedding attributes with higher-order structures

(e.g., motifs) can further improve the quality of the networks generated by exploiting any

overlaps of nodes’ latent interests. To this end, we design a Node Roles Graph Convolutional

Network (GCN) and a Motif Types Convolutional Neural Network (CNN) for sampling motifs

(and their configuration) based on nodes’ roles and their content embedding attributes.

Graph structure evaluation metrics, such as density and clustering coefficient for exam-

ple, have been designed for static graphs. With recent work in dynamic network generative

models, there is a need of metrics that consider the temporal dimension. Evaluating gen-

erative models for attributed dynamic networks poses another challenge. On static graphs,

we can measure the attribute auto-correlation of nodes and their neighbors. In dynamic

networks, we need to also consider the temporal dimension. We tailor graph metrics to con-

sider temporal structure and node behavior. To address the second challenge, we evaluate

the content embeddings generated by nodes using the distribution of attributes from graph

snapshots, with metrics based on embedding distances. We evaluate our proposed model,

using these three sets of metrics (for temporal structure, node content embeddings and be-

havior), against three recent models on four real-world datasets. The results show that

DYANE generates networks with similar node topic and behavior to the observed networks

and better graph structure overall, compared to the other models.

To summarize, we make the following contributions: (1) we developed a generative model

for dynamic networks with content, that combines a GCN and CNN for generating synthetic

graphs with new structure similar to the observed input network, and is also able to sample

new content embeddings (previously unseen), and (2) we outline a methodology to evaluate

nodes’ latent interests over time, based on their content embeddings and keywords extracted

from the content (as topic representations).
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The rest of the chapter is organized as follows: In  Subsection 5.1.1 , we formally define

the problem of attributed dynamic network generation. We then go over related work to

show where our model fits in the literature in  Section 5.2  .  Section 5.3  presents our proposed

model, DYANE. In  Section 5.4 , we present our evaluation methodology, metrics, datasets,

and baselines used. Experimental results and discussion is in  Section 5.5 . Finally, we present

our conclusions in  Section 5.8 .

5.1.1 Problem Definition

The problem of generating dynamic networks with content embeddings is a specific ex-

ample of generating temporal networks with changing structure and attributes. The goal

of attributed dynamic network generation is to generate a new synthetic dynamic network

similar to an observed network. We formally define the problem as follows:

Problem 5. Attributed Dynamic Network Generation

Input 5. An attributed dynamic network G = {G1, . . . , GT}, where Gt = (V, Et, Xt) is a

graph snapshot, V is the set of nodes, Et is the set of edges at time t, and Xt is the set of

attributes at time t.

Output 5. An attributed dynamic network G′ = {G′
1, . . . , G′

T ′}, where the distribution of

graph structure for G′ matches G, the node behavior of a specific node vi′ in G′ should be

similar to a specific node vi in G, and the distribution of attributes for G′ matches G.

Concretely, consider an arbitrary graph statistic s(G) (e.g., density). Then the distribu-

tion of statistic values observed in the input attributed dynamic network sin = {s(G1), . . . , s(GT )}

should match the distribution of statistic values observed in the output attributed dynamic

network sout = {s(G′
1), . . . , s(G′

T ′)}. Likewise, take any node statistic s(vi|G) (e.g., node de-

gree). Then, using the temporal distribution of values for a node s(vi|G) = {s(vi|G1), . . . , s(vi|GT )},

the distribution of values for all nodes in the input dynamic network {s(vj|G)}j∈G should

match the distribution of values for all nodes in the output dynamic network {s(vj′ |G′)}j′∈G′ .

Similarly, the distribution of attributes in the input attributed dynamic network X =
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{X1, . . . , XT} should match the attributes observed in the output attributed dynamic net-

work X′ = {X ′
1, . . . , X ′

T ′}.

5.2 Related Work

We describe related work on generative network models and in  Subsection 5.2.4 we com-

pare them and discuss open areas to explore.

5.2.1 Static Graph Models

Many generative models for static graphs have aimed to generate synthetic graphs that

can simulate real-world networks (see  Subsection 2.2.1  ). Statistical models where model

parameters can be estimated from observed data, such as Exponential Random Graph Models

(ERGMs) [  4 ,  6 ,  73 ] and the Kronecker Product Graph Model (KPGMs) [  17 ,  19 ,  47 ], allow

generation of graphs by sampling from the estimated distribution. However, these methods

focus on capturing either global or local graph properties, but not both.

More recently, deep graph neural networks have received a lot of attention for their ability

to model realistic graphs. GraphGAN [ 22 ] and NetGAN [  23 ] are both based on generative

adversarial networks. GraphGAN learns from each node’s connectivity distribution, while

NetGAN learns from a distribution of biased random walks. GraphRNN [ 24 ] learns from

a representative set of graphs and generates the adjacency of a graph by generating the

adjacency vector of each node.

5.2.2 Temporal Graph Models

Initial models for temporal or dynamic networks (where links appear and disappear,

such as social-network communication patterns) focused on modeling the edges over time,

ignoring higher-order structures [  48 – 50 ]. Static Networks with Link Dynamics (SNLD) [ 49 ]

first creates a static graph from a degree distribution, and for each link it generates a sequence

of contacts. Activity-Driven Network (ADN) [ 59 ,  60 ] starts with an empty snapshot, marks

nodes as active according to a probability, and (if active) connects it to m random nodes.
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Although traditionally most graph models have been edge-based, motifs have been es-

tablished as building blocks for the structure of networks [  51 ,  53 ,  56 ]. Thus, modeling motifs

can help to generate the graph structure seen on real-world networks and capture correla-

tions in node connections and activity. The Structural Temporal Model (STM) [  57 ] finds

structural motifs in an input graph and estimates their arrival rates. Afterwards, using

a variation of preferential attachment, STM produces aggregated temporal networks (i.e.,

edges will not be removed once they are placed). DYnamic MOtif-NoDes (DYMOND) [  74 ] is

a probabilistic dynamic-graph generative model that samples graphs with realistic structure

and temporal node behavior using motifs. DYMOND considers both the dynamic changes

in overall graph structure using temporal motif activity and the roles nodes play in motifs.

DynamicTriad [  75 ] learns node embeddings by modeling the triadic closure process. Dyn-

Graph2Vec [ 76 ] learns the structure of evolution in dynamic graphs and can predict unseen

links with higher precision. TagGen [  64 ] is a dynamic graph neural network model that takes

into account higher-order structure by using node-biased temporal random walks to learn

the network topology and temporal dependencies. TG-GAN [  77 ] captures structural and

temporal patterns of dynamic networks using temporal walks and a discriminator.

5.2.3 Attributed Graph Models

Although there are various models for generating attributed graphs, such as MAG [ 25 ],

AGM [  26 ], and CSAG [  27 ], they have focused on static graphs (See  Subsection 2.2.1  ). The

dynamic attribute network embedding model (Dane) [  78 ] uses an activeness-aware neigh-

borhood embedding method (GraphSAGE [  39 ]) to extract the higher-order neighborhood

information at each given timestamp. The activeness-aware mechanism emphasizes more

on nodes that are active in social activities. Dane is used to predict the network status

at the next timestamp (i.e., the link connections and node categories at t + 1). Dynamic

Graph Normalizing Flows (DGNF) is a graph representation model for dynamic attributed

graphs that can be used for link prediction [  79 ]. CTWalk models dynamic attributed net-

works, capitalizing on temporal random walks and conditional GANs [  80 ]. Specifically, it

builds upon TagGen [ 64 ], for temporal edge generation, and CTGAN [  81 ], for generating
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node and edge attributes seen in the input graph. To the best of our knowledge, CTWalk

is the only generative model for attributed dynamic networks—that can generate synthetic

graphs—apart from our proposed model.

5.2.4 Discussion

 Table 5.1  shows a comparison of the models presented in the related work with our

proposed model DYANE for attributed dynamic networks, presented in  Section 5.3  . Few

models have been proposed for generating synthetic dynamic graphs. Although motifs have

been shown to be building blocks of real-world networks [  51 ], DYMOND (  Section 4.4  ) is the

only dynamic network generative model that considers motifs. Apart from DYMOND, only

TagGen [ 64 ] and TG-GAN [  77 ] consider higher-order graph structure, but can only generate

the same number of timesteps as the input graph.

For attributed dynamic networks, Dane [  78 ] and CTWalk [  80 ]. However, Dane cannot

generate entirely synthetic graphs. Our proposed DYANE model will generate synthetic at-

tributed dynamic graphs. CTWalk generates network attributes based on edges or individual

nodes, ignoring the higher-order structures. Additionally, CTWalk only generates discrete

attributes that were observed in the input graph (i.e., cannot generate new attributes based

on input graph).

5.3 DYnamic Attributed Node rolEs Model

We propose a novel method for generating attributed dynamic networks. We assume that

node interactions are determined by the users’ latent interests (static or slowly changing)

and the way of expressing those interests. Our proposed model, DYnamic Attributed Node

rolEs (DYANE), extends motif-based node roles ( Figure 5.2 ) to roles that generate content

embeddings. The model makes the following assumptions about the graph generative process:

1. All nodes remain active

2. Nodes have a probability distribution over role types that they play in motifs

3. Node attributes are aggregated from edges (interactions)

4. Node latent topics/interests vary over time
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5. Node interactions are determined by the node roles and latent topics/interests

First we describe DYANE’s generative process below. Then we outline our approach to

estimate model parameters from an observed dynamic network. In the generation process,

the motifs are sampled from a probability distribution based on the latent interests of the

nodes and the roles they would have to play in a particular motif type, while also ensuring

the motif type proportions in the graph are maintained. For example, in a wedge one node

would be a hub and the other two would be spokes ( Figure 5.2 ).

Figure 5.2. Motif Types and Node Roles

The motivation for our modeling approach is based on the following conjectures: (1)

modeling higher-order structures (i.e., motifs), will capture the underlying distribution of

graph structure, and (2) considering the nodes’ latent interests and motif roles will also

capture correlations in node content embeddings, connections, and activity.

5.3.1 Generative Process

The overall generative process is described in  Figure 5.3  , and the model architecture is

illustrated in  Figure 5.4 . We model the time until nodes become active as Gamma random

variables with the same rate, and the motif inter-arrivals as a Bernoulli Process, whose

parameters depend on the motif type. Therefore, we use Geometric random variables as the

inter-arrival times and a Beta prior on the distribution of inter-arrival rates for each motif

type.

We first sample the arrival times for all nodes from a Gamma distribution (  Figure 5.3a  

and  equation 5.1 ).

xv ∼ Γ(α, β)
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g :=
[
v ∈ V 7→ b|xv|c

]
(5.1)

Figure 5.3. DYANE Generative Process

At each timestep t, we first calculate any new triplets Ut ( Equation 5.2  ) that can be

sampled as motifs from the set of active nodes V ′
t ( Equation 5.3  ), where g(v) is the arrival

time of node v ( Equation 5.1 ).

Ut =
{
{u, v, w} ⊂ V ′

t : {u, v, w} /∈ Ut−1
}

(5.2)

V ′
t = {v ∈ V : g(v) ≤ t} (5.3)

In  figure 5.3b , we sample motifs from these new triplets in Ut, using the motif type

probabilities obtained from the Motif Types CNN ( Algorithm 10  and  line 3  ), which are

based on the node roles and content embeddings ( Figure 5.4c ). For the motif inter-arrivals
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( Figure 5.3c  ), we first sample an inter-arrival rate λ{u,v,w} from a Beta distribution with

parameters αi, βi, which depend on the motif type i sampled. We sample motif inter-arrival

times using that rate (  Algorithm 12  ). Afterwards, we sample node roles for each motif

node and update the counts for node roles assigned ( Figure 5.3d ). The updated counts

( Algorithm 13  and  line 15  ) are then used to update the node role embeddings with the

meta-model (  Figure 5.4d ).

Figure 5.4. DYANE Model Architecture. (a) Node Roles GCN, (b) Content
Model, (c) Motif Types CNN, (d) Node Roles Meta-Model

In  figure 5.3e  , we sample content embeddings for each timestep the motif will be in

( Algorithm 11  ). In  line 3  , we only consider the content embeddings of “influential” nodes

(i.e., nodes that are part of the motif’s edges). We “seed” the embedding with the influential

nodes’ average content embeddings ~zv′ ( line 6  ). For each time the motif will appear, we create

a new content embedding by adding Gaussian noise ( line 10 ), using influential nodes’ content

embeddings variance ~yv′ . Lastly, we assemble G′ using the motifsM, inter-arrival timesMS,

node roles MR, and content embeddings sampled MX ( Algorithm 14 and  figure 5.3f ).
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Algorithm 10: SampleMotifs
input: Ut, q(i)
output: Mt // sampled motifs

MT
t // motif types

1 begin
2 n :=

[
i ∈ [3, 2, 1] 7→ q(i) · |Ut|

]
// Get probabilities from CNN

3 P←
[
{u, v, w} ∈ Ut 7→ MotifTypesCNN(u, v, w)

]
4 for i ∈ [3, 2, 1] do
5 U ′

t := Ut, P′ := P // initialize
6 if |Ut| > max_size then

// Use a reservoir if too large
7 U ′

t ← ReservoirSampling(Ut, max_size)
8 P′ ←

[
{u, v, w} ∈ U ′

t 7→ P{u,v,w}
]

9 M(i) ∼ Mult(P′(i), n(i)) // sample motifs
10 MT

t :=
[
m ∈M(i) 7→ i

]
// save motif types

11 Ut ← Ut −M(i) // triplets left to sample

Algorithm 11: SampleMotifContent
input: X, Mt, MS

t , MR
t

output: MX
t // sampled motif content

1 begin
2 for m ∈Mt do // ea. motif sampled

// get influential nodes from motif roles
3 m′ :=

{
v′ ∈ m :MR

t (m, v′) 6= outlier
}

// get embedding mean and variance ea. node
4 Y←

[
~yv′ = var(X(v′)) | v′ ∈ m′

]
5 Z←

[
~zv′ = avg(X(v′)) | v′ ∈ m′

]
6 ~b← avg(Z) // seed embedding
7 ~σ2 ← avg(Y), ~µ← [0, . . . , 0]
8 for t ∈MS

t (m) do // ea. timestep of motif
9 ~n ∼ N (~µ, ~σ2) // sample Gaussian noise

10 MX
t (m)← ~b + ~n // new embedding
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5.3.2 Learning

Given an observed dynamic graph G, we estimate the input parameters for our generative

process.

Node Arrivals

We begin by fitting a Gamma distribution to the node arrival times, estimating the shape

and rate parameters (α and β respectively). We estimate the arrival time xv of a node v,

with the timestep in which v had its first edge:

x̂v = arg min
t

1(v ∈ Vt) (5.4)

X = (x̂1, . . . , x̂|V |) (5.5)

X ∼ Γ(α, β) (5.6)

Motif Proportions

We iterate over the graph snapshots Gt to find the 3-node motifs in each timestep t. To

determine the motif type i of a motif {u, v, w}, we keep track the edge configurations we find

and select the higher-order motif type. For example, if we observe the triplet {u, v, w} is a

triangle at timestep t and we previously saw it as a wedge, we update its type to a triangle.

Then, we use the maximum likelihood estimate (MLE) of the Binomial distribution to

calculate the motif proportions q(i) of each type in the graph, where i corresponds to the

number of edges in the motif (i.e., i = 1 for a 1-edge, i = 2 for a wedge, and i = 3 for a

triangle motif):

q̂(i) =


∣∣{{u,v,w} ∈ M : MT ({u,v,w}) = i

}∣∣
(|V |

3 ) , if i ∈ [1, 2, 3]

1−∑3
i=1 q̂(i), otherwise

(5.7)
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whereM is the set of observed motifs,
(

|V |
3

)
is all possible 3-node combinations, and {u, v, w}

is a motif consisting of the nodes u, v, w.

Motif Inter-Arrivals

We assume that the motif inter-arrivals come from a Bernoulli process. The inter-arrival

times of each observed motif {u, v, w} follow a Geometric distribution with parameters

λ{u,v,w}, and the number of times the motif appears follows a Binomial distribution with

parameters n, λ{u,v,w}, where n = T is the number of trials (timesteps). When n is known,

we can estimate the parameter λ{u,v,w} with the MLE:

λ̂{u,v,w} =
∑T

t=1 dt

(
{u, v, w}

)
T

(5.8)

Given that we consider all possible 3-node motifs, there will be common edges among

them. Thus, to count the number of times a motif appeared, we use edge-weights based on

how many motifs share that edge. We use these edge-weighted counts dt, per timestep t,

to estimate the inter-arrival rate for each motif {u, v, w} ( Equation 5.9a  ). The weights ω
(i)
t

will depend on the motif type i of {u, v, w} and are calculated for each edge of the motif

( Equation 5.10a ).

dt

(
{u, v, w}

)
=
∑

(u′,v′)∈et({u,v,w}) ω
(i)
t (u′, v′)

|et({u, v, w})| (5.9a)

et({u, v, w}) =
{
{u′, v′} ⊂ {u, v, w} : (u′, v′) ∈ Et

}
(5.9b)

For a motif {u, v, w}, we calculate the weight of its edge (u′, v′) using the count for the

edge in the timestep window and considering its motif type i ( Equation 5.10a  ). We give larger

edge-weight to motif types with more edges, since they are more likely to produce the ob-

served edges. This also ensures that motif types with smaller proportion q(i) ( Equation 5.7 )

have a high enough inter-arrival rate to show up (i.e., triangles).

82



ω
(i)
t (u′, v′) =

min
(
r

(i)
t (u′, v′), n(i)

t (u′, v′)
)

n(i)
t (u′, v′)

(5.10a)

r (i)
t (u′, v′) =



ct(u′, v′), if i = 3

r (i+1)
t (u′, v′)− n(i+1)

t (u′, v′), if i ∈ [1, 2], r (i+1)
t (u′, v′) > 0

0, otherwise

(5.10b)

n(i)
t (u′, v′) =



|Nt(u) ∩Nt(v)|, if i = 3

|Nt(u)⊕Nt(v)|, if i = 2

|V −
(
Nt(u) ∪Nt(v)

)
|, if i = 1

(5.10c)

where |n(i)
t (u′, v′)| is the number of motifs of type i that share edge (u′, v′), the number of

times (u′, v′) appears in Et is ct(u′, v′), the remaining edge count is r
(i)
t (u′, v′) for motif type

i, and Nt(u), Nt(v) are the neighbor’s at time t of nodes u and v, respectively.

We use Beta distributions with parameters αi, βi as a prior on the inter-arrival rates of

motifs with the same type, for each motif type i. Note that we do not need to estimate rates

for the empty motif type (i = 0). During the generative process, we sample inter-arrivals for

new motifs of type i from the corresponding prior distribution.

Node Role Probabilities

For every node vi, we estimate it’s node role probabilities from the counts that vi had each

role r ∈ R, with the MLE of the Multinomial distribution. For a node vi, let proles
i be its node

role probabilities, xroles
i its weighted node role counts (elsewhere noted as c

(vi)
R for conciseness),

and n = ∑
r xroles

i,r the total number of role counts, such that xroles
i ∼Mult(n, proles

i ). We then

estimate the node role probabilities as follows:

p̂roles
i = xroles

i
n

=
(

xroles
i,1

n
, . . . ,

xroles
i,k

n

)
(5.11)
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where R = {equal3, hub, spoke, equal2, outlier} is the set of possible roles, k = |R| is the

number of roles, and xroles
i,r = count(vi, r) is the weighted count of times that node vi had role

r ( Algorithm 15  ). Edge-weights ( Equation 5.10a  ) are used to avoid over-counting the roles

for motifs of the same type with a shared edge.

Node Roles GCN

The Node Roles graph convolutional network (GCN) ( Figure 5.4a  ) is used to obtain the

initial node role embeddings that will be fed into the Motif Types CNN for training. The

Node Roles GCN takes as input the graph adjacency At (with the identity matrix I as node

features) at each timestep t, and each is passed individually through the GCN Convolution

layers.

H(l+1)
t = f

(
H(l)

t , At

)
(5.12)

= ReLU
(
AtH(l)

t

)
W(l)

t

H(1)
t = I (5.13)

Each GCN layer has it’s own W(l)
t at each timestep, where l ∈ [1, . . . , L]. Each final output

from the GCN layers will be an input for an LSTM cell, where the sequence of LSTM cells

combines the temporal aspect. The temporal input for an LSTM cell at time t is H(L+1)
t .

oi = LSTM
(
H(L+1)

1:T (vi)
)

(5.14)

oroles
i = Wfinaloi + bfinal (5.15)

ŷroles
i = softmax

(
oroles

i

)
(5.16)

Then, the output of the LSTM sequence oi, for node vi, is passed through a Linear layer and

a Softmax function to obtain the node role probabilities ŷi of node vi. We train the Node

Roles GCN for 200 epochs and use categorical cross-entropy as a loss function at the final
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output layer. We use the estimated node role probabilities (  Equation 5.11  ) as the ground

truth yi for node vi.

L(ŷroles
i , yroles

i ) = −
∑
i∈V

|R|∑
j

yroles
i,j log(ŷroles

i,j ) (5.17)

The last hidden layer of the Node Roles GCN is used as the initial node role embedding for

a node.

Node Roles Meta-Model

The Node Roles Meta-Model is used to update the node role embeddings. As motifs and

node roles are sampled at each timestep t in the generative process, the node role probability

distributions must be updated. Similarly, the node role embeddings will be updated using

the most recent node role counts cR ( Algorithm 13 and  line 15  ).

We fit a Ridge Regression model (i.e., linear least squares with `2-norm regularization)

using the node role counts as the input Xroles and the node role embeddings as the labels

Yroles. We use cross-validation during training and perform a grid search over the parameters.

The loss function R is the squared `2 norm,

R(w) =
d∑

i=j
w2

i (5.18)

1
n
||Yroles −Xrolesw||22+λ

∑
j=1d

|wj|2→ arg min
w∈Rd

(5.19)

and the closed-form solution for w is:

w = (X>
rolesXroles + λI)−1X>

rolesYroles (5.20)

To update the node role embedding for a node vi, we then pass the updated node role

counts as input xroles
i = c

(vi)
R and we have:

ŷroles
i =

∑
j

wjx
roles>
j xroles

i (5.21)
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Note that in this case ŷroles
i is the predicted node role embedding of node vi, and the ground

truth yroles
i is the Node Roles GCN last hidden layer output oroles

i ( Equation 5.15 ).

Content Model

The Content Model (  Figure 5.4b  ) is used to obtain the node content embeddings that will

be fed into the Motif Types CNN as part of the input. We obtain the content embedding

for a node, by passing all content authored by the node through a Sentence-Transformer

[ 82 ] encoder. Then, we take the average of those embeddings as the content portion of the

node embedding (i.e., ~zv′ = avg(X(v′))). We use available pre-trained models to embed the

content of the observed graph G. Specifically, we use Distil-RoBERTa [  83 ] and SPECTER

[ 84 ,  85 ] for scientific/academic content.

Motif Types CNN

The Motif Types convolutional neural network (CNN) (  Figure 5.4c  ) takes as input the

node embeddings for a triplet {u, v, w} (i.e., the node roles and content embeddings concate-

nated for each node) and will output the probabilities for each motif type i (i.e., probability

of being a triangle, wedge, 1-edge, or empty). More concretely, let x ∈ RN×d be the matrix

of node embeddings for the triple {u, v, w}, defined as:

x = (~ru ⊕ ~zu, ~rv ⊕ ~zv, ~rw ⊕ ~zw) (5.22)

where d = |~rv′ ⊕ ~zv′| is the node embedding dimension, and N = 3 is the number of nodes

in the triple.

To perform a convolution operation for input x, windows slide from top to bottom

through multiple convolution kernels of size k × d (k ∈ [1, 2, 3]), and the number of fil-

ters for each kernel is L = 100. In a window of k node embeddings xn:n+k−1, a filter F l

(1 < l < L) returns the feature map cl
n, defined as:

cl
n = ReLU

(
Wl ◦ xn:n+k−1 + bl

)
(5.23)
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where ◦ is the convolutional operator, Wl ∈ Rk×d and bl denote the weight matrix and bias,

and k is the length of the filter. As the filter F l traverses from x1:k−1 to xN+k−1:N , we get

the output feature maps cl = (cl
1, . . . , cl

N−k+1).

Afterwards, we perform max pooling on the features maps we obtained for filter F l (with

length k) and we get ol
k = max(cl). Then, in the flattened layer we get o and pass that

through a linear layer to get o′, as follows:

o =
(
o1

k, . . . , oL
k , . . . , o1

K , . . . , oL
K

)
(5.24)

o′ = Wfinalo + bfinal (5.25)

To get the motif type probability, we apply a Softmax function to obtain P{u,v,w}. Let

P(i)
{u,v,w} denote the probability of motif {u, v, w} having motif type i. Then the predicted

motif type is ŷ{u,v,w} is calculated as:

P{u,v,w} = softmax (o′) (5.26)

ŷ{u,v,w} = arg max
i

(
P(i)

{u,v,w}

)
(5.27)

We train the Motif Types CNN for 300 epochs and use cross-entropy as the loss function.

We use the observed motif type in the input network G as the ground truth y{u,v,w} and

perform stratified sampling to select motifs for the training set Mtrain and test set Mtest.

Let j be the index of motif {u, v, w} in the training set, then the loss function is defined as:

L
(
ŷmotif

j , ymotif
j

)
= −

∑
j∈Mtrain

ymotif
j log(ŷmotif

j ) (5.28)

5.4 Methodology

We first describe the baseline models ( Subsection 5.4.1  ) and datasets (  Subsection 5.4.2  )

used in our evaluation. Then, we introduce the metrics for evaluating graph structure, node

behavior and content embeddings (  Subsection 5.4.3  ). We learn model parameters on the

observed input graph for our model and all baselines.
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5.4.1 Baselines

TagGen

The TagGen baseline is a deep graph generative model for dynamic networks [  64 ]. It

models a deep generative process of k-length temporal walks using local operations (addition

and deletions of temporal edges), to generate synthetic temporal random walks. We used

the available implementation of TagGen 

1
 .

TG-GAN

The TG-GAN baseline learns distributions of temporal walks to capture topological and

temporal patterns of temporal graphs [  77 ]. It consists of two parts, a temporal walk gener-

ator and a discriminator. We used the available implementation of TG-GAN 

2
 . Given that

TG-GAN relies on continuous timesteps, we transform the datasets edges to use the edge

timestamps directly. After generating a new network, we transform it to match the graph

snapshots and time-windows of the observed network.

CTWalk

The CTWalk baseline models temporal graphs with attributes, capitalizing on temporal

random walks and conditional GANs [ 80 ]. Specifically, it builds upon TagGen [ 64 ], for tem-

poral edge generation, and CTGAN [  81 ], for generating node and edge attributes. We used

the implementation kindly provided by the authors. Given that CTWalk relies on discrete

attributes, we created topic labels from the content text and embeddings with BERTopic

[ 86 ].

5.4.2 Datasets

We use the datasets described below, with more detailed statistics shown in  Table 5.2  .
1

 ↑  https://github.com/davidchouzdw/TagGen  

2
 ↑  https://github.com/tongjiyiming/TGGAN  
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Table 5.2. Attributed Dynamic Networks Statistics
Dataset |V | |E| Unique |T | Length Time Span
Aminer 602 4,124 1,041 10 1 yr. 2010–2019
Congress 1,283 425,297 116,097 762 1 day 12/19–12/21
R-Posts 1,009 48,780 15,166 41 1 mo. 12/13–04/17
R-Replies 1,894 58,836 7,330 41 1 mo. 12/13–04/17

Arnetminer

The Arnetminer dataset (Aminer) is an academic co-authorship network, where nodes

represents authors, edges represent co-authorship on a paper, and the content is the title

and abstract of a paper [  87 ,  88 ].

Congress Tweets

The Congress Tweets dataset (Congress) is a social network, where nodes represent Twit-

ter accounts of US Congress, edges represent mentions or re-tweets, and the content is the

text of the tweet [  89 ,  90 ].

Reddit Cross-posts

The Reddit Cross-posts dataset (R-Posts) is a social network, where nodes represent

subreddits, edges represent cross-links between subreddits, and the content is the text of the

post linking to another subreddit [  91 – 93 ].

Reddit Replies

The Reddit Replies dataset (R-Replies) is a social network, where nodes represent Reddit

users, edges represent replies to posts or comments, and the content is the text of reply [  92 ,

 94 ,  95 ].
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5.4.3 Evaluation

We use two sets of metrics in our evaluation for graph structure and node behavior. The

majority of graph structure metrics we selected are widely used to characterize graphs. With

these first set of metrics we aim to measure if the overall graph structure of the generated

graph G′ is similar to the dataset graph G. For the second set, we propose to use node-

aligned metrics to capture node behavior. For the evaluation of node content embeddings, we

want to measure how close or similar the observed attributes X are to X′. We use different

distance and similarity metrics for the content embeddings and estimated topics, which are

discrete attributes.

Graph Structure

To evaluate the graph structure generated by the models against that of the datasets,

we use the following metrics: density, average local clustering coefficient, global clustering

coefficient, average path length of largest connected component (LCC), and s-metric. Density

measures ratio of edges in the graph to the number of edges in a complete graph. The local

clustering coefficient quantifies the tendency of the nodes of a graph to cluster together,

and the global clustering coefficient measures the ratio of closed triplets to open and closed

triplets (wedges and triangles, respectively). The average (shortest) path length measures the

efficiency of information transport, for all possible pairs of nodes. The s-metric measures

the extent to which a graph has hub-like structure [  44 ]. Together with local and global

clustering, these metrics provide insight into graph structure, such as tightly knit-groups

and large star structures.

We calculate the graph structure metrics for each time-window of the generated graph

G′ and the input graph G. Specifically, for each graph structure metric s, we calculate

the distribution of values sgen of the generated graph and sin of the input graph (where

sin = {s(G1), . . . , s(GT )}, and Gt ∈ G). Given that we aim to model the distribution of graph

structure, and not just generate the same graph sequence, we calculate the Kolmogorov-

Smirnov (KS) test statistic on sgen and sin to evaluate G′ against G.
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Node Behavior

To compare the temporal node behavior of the generated graphs against the datasets, we

use the following node-aligned, temporal metrics: activity rate, temporal degree distribution,

clustering coefficient, closeness centrality, and the size of its connected component. The

activity rate of a node reflects how often it participates in an edge. The temporal degree

distribution of a node u is the set of degrees of u over all snapshots Gt (i.e., it shows how

many nodes it interacts with). The local clustering coefficient of a node measures how close

its neighbors are to becoming a clique. The closeness centrality of a node u in a (possibly)

disconnected graph is the sum of the reciprocal of shortest path distances to u over all

other reachable nodes. Together, the node’s closeness centrality and size of its connected

component indicate the location of the node relative to others.

We calculate the node-aligned, temporal metrics for every node in the input graph G and

in the generated graph G′. Node-alignment refers to assumption that node ids are aligned

over graph snapshots, within a graph sequence (e.g., {G1, . . . , GT}). Based on this, we

measure the distribution of values a node has over time s(vi|G) = {s(vi|G1), . . . , s(vi|GT )}

for each metric s. Since the nodes in G do not necessarily correspond to those in G′, we

consider the inter-quartile range (IQR) of values over time {s(vj|G)}j∈G. We then perform

a 2-dimensional KS test using the Q1 and Q3 values of all nodes in G and G′. With this

approach, we can capture each node’s individual behavior and their joint behavior. Unlike

using the mean and median of the s values, this approach can capture characteristics of

the distribution of values and can be misleading. For example, a synthetic graph G′ could

have mean and median values of a metric s very close to those of an observed graph G,

but have a much larger dispersion of s values than observed in G. We use the KS test on

the inter-quartile range (i.e., Q1 and Q3) because it does not make assumptions about the

distribution of values and can capture variability or dispersion.

Node Content

To evaluate the generated content embeddings, we use the following metrics on the con-

tent embeddings: Distance correlation with Central Kernel Alignment, and Fréchet Bert Dis-
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tance. Central Kernel Alignment (CKA) generalizes squared cosine similarity and Pearson

correlation to the multivariate case (e.g., sets of embeddings) [  96 ,  97 ]. Distance correlation

measures both linear and non-linear relationships between two random vectors, even when

they have different dimensions [  98 ]. Fréchet Bert Distance (FBD) measures distance between

BERT-based embedding sets—Specifically, it measures the distance between the distribution

of generated data and the observed [  99 ]. We use the available implementations of CKA 

3
 ,

distance correlation 

4
 [ 100 ], and FBD  

5
 .

To evaluate the similarity of the node’s topics, we fit a BERTopic model [  86 ] on the

observed content and embeddings to get the embedding topics. For the CTWalk baseline,

we use directly the discrete attributes generated, which correspond to the topics. For our

model, DYMOND, we calculate the topics of the generated embeddings with the previously

fitted model. We compare both models with the following topic metrics: Szymkiewicz-

Simpson Coefficient (SSC), Jaccard Similarity Index, (Jaccard) and SørensenDice Similarity

Coefficient (DSC). SSC measures the overlap of common elements in two sets. In contrast

to SSC, Jaccard always penalizes differences between the sets. DSC gauges the similarity of

two samples, similar to Jaccard, but gives more weight to set commonalities than differences.

We calculate these metrics for every node on their content in the input graph G and

generated graph G′ (i.e., X against X′). Specifically, we measure the distribution of values

on all nodes s(X, X′) = {s(vk|X, X′)}k∈(G∧G′) for every content metric s and report the

average. We also investigate the quality of the generated embeddings by visually inspecting

the topics extracted for a small sample of nodes.

5.5 Results

5.5.1 Evaluation of Generated Graphs

We show the KS statistic (lower is better) for the graph structure ( Figures 5.5a  and  5.6a  

6
 )

and node behavior ( Figures 5.5b and  5.6b ) of the Reddit Cross-Posts and Arnetminer
3

 ↑  https://github.com/babylonhealth/corrsim  

4
 ↑  https://github.com/vnmabus/dcor 

5
 ↑  https://github.com/gretelai/public_research  

6
 ↑ See  Section 5.6 for variability analysis of  Figure 5.6 
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datasets. The remaining results for the Reddit Replies and Congress Tweets datasets are in

 Figures 5.8 and  5.9 .

(a) Graph Structure Metrics (b) Node Behavior Metrics (c) Node Topic Metrics

Figure 5.5. Results for Reddit Cross-Posts (R-Posts) dataset: in subfigures
(a,b) lower value is better, (c) higher value is better

(a) Graph Structure Metrics (b) Node Behavior Metrics (c) Node Topic Metrics

Figure 5.6. Results for Arnetminer (Aminer) dataset: Average statistic and
+1/−1 Standard Deviation is shown over 10 trials

In order to compare the models more easily, we calculated the mean reciprocal rank

(MRR) of the KS statistics for the graph structure and the node behavior metrics. To

calculate the MRR, we ranked all models’ results by using the KS statistics. In  Tables 5.3 

and  5.4 , we can observe that our model (DYANE) outperforms the baselines when considering

each set of metrics together using the MRR (higher is better), for both graph structure and

node behavior. The omitted baseline results are due to two reasons: (1) TG-GAN models

continuous time and expects a smaller time granularity than available for the Arnetminer

dataset, (2) TagGen was not able to run on the Congress Tweets dataset due to its size.
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Table 5.3. Graph Structure Metrics (MRR)
Model Aminer Congress R-Posts R-Replies
DYANE 0.87 1.00 0.90 0.87
CTWalk 0.50 0.60 0.47 0.33
TG-GAN — 0.37 0.27 0.50
TagGen 0.60 — 0.47 0.53

Table 5.4. Node Behavior Metrics (MRR)
Model Aminer Congress R-Posts R-Replies
DYANE 1.00 1.00 0.80 0.90
CTWalk 0.37 0.43 0.70 0.40
TG-GAN — 0.53 0.28 0.80
TagGen 0.50 — 0.30 0.28

5.5.2 Evaluation of Generated Content

We also show the similarity metrics (higher is better) for the node topics ( Figures 5.5c  

and  5.6c ) of the Reddit Cross-Posts and Arnetminer datasets. The evaluation results of the

node topics for other datasets are in  Figures 5.8 and  5.9 . TagGen and TG-GAN do not

model any attributes, so their results are not included in the figures. Our model (DYANE)

consistently outperforms the CTWalk baseline in the node topics evaluation metrics.

We also evaluated the generated content embeddings against the observed with the con-

tent embedding metrics, and show the results in  Table 5.5 . Our model achieved high CKA

distance correlation (d-corr) in the majority of the datasets (higher is better). We also ob-

serve that the lowest Fréchet Bert Distance (FBD) is in the Arnetminer dataset (lower is

better). This is also consistent with the topic evaluation results.

Table 5.5. Content Embedding Metrics (DYANE)
Metric Aminer Congress R-Posts R-Replies
d-corr 0.94 0.93 0.73 0.61
FBD 0.24 0.78 1.11 1.37
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(a) Topics in Observed Embeddings (b) Topics in Generated Embeddings

Figure 5.7. Embedding Topics in Congress Tweets dataset

To inspect the quality of the sampled content embeddings, we used the topics extracted

with BERTopic and created topic word clouds, weighed using their frequency. We show an

example, to compare the generated embeddings against the observed content embeddings,

for the Congress Tweets dataset (  Figure 5.7 ). Qualitative results for the other datasets are

omitted due to space.

5.5.3 Discussion

TagGen, compared to itself, performs better in the Arnetminer dataset than the other

datasets. Arnetminer has star structures (high degree nodes) over time and shorter diameter

than the other datasets. TagGen benefits from very active and high degree nodes due to

its biased temporal random walks. TG-GAN has comparable results to TagGen in graph

structure, but performs better in the node-aligned metrics for the Reddit datasets. In both

datasets, the majority of the nodes are of high-degree, possibly hindering TagGen’s per-

formance in comparison. CTWalk is the only baseline that also models attributes and also

extends TagGen. CTWalk performs comparable or better than TagGen in both of the Reddit

datasets; demonstrating that modeling attributes can improve the quality of the networks

generated. Our model, DYANE, consistently outperforms the baselines while considering the

graph structure and node-aligned metrics. DYANE also outperforms CTWalk on the node

topic metrics. CTWalk generates attributes based on edges or individual nodes, whereas

DYANE considers higher-order structures (motifs). Additionally, CTWalk only generates
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discrete attributes that were observed in the input graph. In contrast, DYANE generates

new content based on the pooled interests of the nodes in the motif and their roles (using their

content embeddings). Generating content using higher-order structures and embeddings can

exploit any possible overlaps of latent interest.

5.6 Variability Analysis

The order in which motifs and node roles are sampled introduces variability in the gener-

ated networks. We generated 10 synthetic networks with parameters learned on the Arnet-

miner dataset. In  Figure 5.6  , we show the average statistic and +1/−1 standard deviation

for each metric. In  Figure 5.6a  , the mean KS statistic of the CTWalk baseline for both

the local and global clustering coefficient was 1.0 on all 10 experiments. When considering

the global clustering coefficient, the standard deviation error bar overlaps the bars for the

CTWalk and TagGen baselines. In  Figure 5.6b  , the mean KS statistic of our model DYANE

is lower than the baselines for all node behavior metrics. In  Figure 5.6c  , the mean metric of

our model DYANE is lower than the CTWalk baseline for all topic metrics.

We performed a Welch’s t-test for the graph structure and node behavior KS statistics,

with α = 0.05. For the lower one-tailed test, the hypotheses are:

H0 :µDYANE = µbaseline (5.29)

Ha :µDYANE < µbaseline (5.30)

In  Table 5.6  , 4 out of 5 null hypotheses are rejected for the CTWalk baseline (H0 :

µDYANE = µCTWalk), and 3 out of 5 null hypotheses are rejected for the TagGen baseline

(H0 : µDYANE = µTagGen). The rejected null hypotheses had p-values of 0.01 or significantly

lower.

Table 5.6. Graph Structure Variability Results (H0 rejected)
Baseline Density Local CC Global CC Avg. Path. Len. S-metric
CTWalk 3 3 3 3

TagGen 3 3 3
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In  Table 5.7 , the null hypotheses for both the CTWalk and TagGen baselines (H0 :

µDYANE = µbaseline) were rejected for all metrics. The rejected null hypotheses had p-values

of 0.0001 or significantly lower.

Table 5.7. Node Behavior Variability Results (H0 rejected)
Baseline Activity Rate Local CC Closeness Conn. Comp. Size Temporal Degrees
CTWalk 3 3 3 3 3

TagGen 3 3 3 3 3

We also performed a Welch’s t-test for the topic metrics, with α = 0.05. For the greater

one-tailed test, the hypotheses are:

H0 :µDYANE = µbaseline (5.31)

Ha :µDYANE > µbaseline (5.32)

In  Table 5.8  , the null hypotheses (µDYANE = µCTWalk) were rejected for all topic metrics.

The rejected null hypotheses had p-values of 0.000001 or significantly lower.

Table 5.8. Topic Variability Results (H0 rejected)
Baseline Szymkiewicz-Simpson Coeff. Jaccard Similarity Sørensen-Dice Similarity
CTWalk 3 3 3

Overall, the results in  Figure 5.6c and  Tables 5.6  to  5.8 are consistent with the mean

reciprocal rank (MRR) results in  Tables 5.3  and  5.4 .

5.7 Scalability Analysis

For conciseness, in this section we use V as the number of nodes, E as the number of

edges, M as the number of motifs, and Ut as the number of new triplets, where the subscript

t denotes the timestep.

Similar to our previous model DYMOND (  Section 4.7  ), the time complexity, in practice,

of the DYANE parameter estimation depends on finding the connected motifs in the observed
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graph, resulting in O(E · V · T ) time. The training set for the Motifs Types CNN includes

disconnected motifs (i.e., the empty motif type). Enumerating the disconnected motifs would

push the theoretical time complexity to O (V 3), given that the number of disconnected motifs

is N =
(

V
3

)
−M . Instead, we sample J indices for adding to the training set, where each

index j is in the interval
[
1,
(

V
3

)]
. For each sampled index, we calculate the jth combination

and add it to the training set, discarding those that correspond to connected motifs in M.

We note that J is a constant and substantially smaller than N , thus the time complexity of

the DYANE parameter estimation remains O(E · V · T ) .

Like before (  Section 4.7  ), the DYANE generative process depends on the number of new

triplets Ut available to sample motifs from, so the time complexity is O
(∑T

t=1 Ut

)
, where

Ut =
(

Vt

3

)
+
(

Vt

2

)
· Vt−1 +

(
Vt−1

2

)
· Vt.

5.8 Concluding Remarks

Our proposed model, DYnamic Attributed Node rolEs (DYANE), is the first to generate

synthetic dynamic networks and sample content embeddings based on motif node roles.

To the best of our knowledge, it is the only attributed dynamic network model that can

generate new content embeddings–not observed in the input graph, but still similar to that

of the input graph. Our results show that modeling the network attributes with higher-

order structures (e.g., motifs) improves the quality of the networks generated. The use

of the Kolmogorov-Smirnov (KS) test adapts graph structure metrics designed for static

graphs to the dynamic graph setting, by considering the distribution of graph statistics.

Similarly, in our proposed content evaluation, we take the distribution of attributes over

time to evaluate the content embeddings generated by nodes, employing metrics based on

embeddings and topic similarity. In conclusion, when jointly considering all three sets of

metrics—for temporal graph structure, node behavior, and content—DYANE outshines other

models in our evaluation on four real-world datasets.
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5.9 Additional Figures and Algorithms

(a) Graph Structure Metrics (b) Node Behavior Metrics (c) Node Topic Metrics

Figure 5.8. Results for Reddit Replies (R-Replies)

(a) Graph Structure Metrics (b) Node Behavior Metrics (c) Node Topic Metrics

Figure 5.9. Results for Congress Tweets (Congress)
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Algorithm 12: SampleMotifTimesteps
input: T , t, Mt, MT

t

output: MS
t // motif timesteps

1 begin
2 n := T − t // num. timesteps left
3 for m ∈Mt do
4 i :=MT

t (m) // get motif type
5 λ{u,v,w} ∼ Beta(αi, βi) // sample distr. type i
6 p ← λ{u,v,w}·n + αi

n + αi + βi
// adjust for n

7 t′ ← t // init
8 while t′ ≤ T do
9 k ∼ NB(1, p) // sample inter-arrival time

10 t′ ← t′ + k // update next timestep
11 if t′ ≤ T then
12 MS(m).append(t′)

Algorithm 13: SampleNodeRoles
input: Mt, MS

t , cR

output: MR
t // sampled node roles

cR // updated role counts
1 begin
2 for m ∈Mt do
3 if i = 3 then // triangle
4 MR(m, v)← equal3, ∀v ∈ m

5 else if i = 2 then // wedge

6 ph ←
[
v ∈ m 7→ P [v,hub]∑

v′∈m
P [v′,hub]

]
// normalize

7 vh ∼ Bin(m, ph) // sample hub node
8 MR(m, vh)← hub
9 MR(m, v′)← spoke, ∀v ∈ m, v 6= vh

10 else if i = 1 then // 1-edge

11 po ←
[
v ∈ m 7→ P [v,outlier]∑

v′∈m
P [v′,outlier]

]
// normalize

12 vo ∼ Bin(m, po) // sample outlier node
13 MR(m, vo)← outlier
14 MR(m, v)← equal2, ∀v ∈ m, v 6= vo

15 count
(
v, MR(m, v)

)
−= |MS(m)|, ∀v ∈ m // update
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Algorithm 14: ConstructGraph
input: M, MS, ME, MX

output: G′ = {G′
1, . . . , G′

T ′} // where G′
t = (V ′

t , E ′
t, X ′

t, S ′
t)

1 begin
2 Mt :=

{
{u, v, w} ∈ M : t ∈MS({u, v, w})

}
3 for t ∈ [1, . . . , T ′] do
4 V ′

t ←
{
v ∈ V : g(v) ≤ t

}
// nodes & content

5 X′
t :=

[
v′ ∈ V ′

t 7→ {MX({u, v, w}) : v′ ∈ {u, v, w}, {u, v, w} ∈ Mt}
]

// edges & timestamps
6 E ′

t ←
{
(u′, v′) ∈ME({u, v, w}) : {u′v′} ⊂ {u, v, w}, {u, v, w} ∈ Mt

}
7 S ′

t :=
[
(u′v′) ∈ME({u, v, w}) 7→ t : {u′v′} ⊂ {u, v, w}, {u, v, w} ∈ Mt

]

Algorithm 15: GetNodeRoleCounts
input: V , E, T
output: cR :=

[
v ∈ V, r ∈ R 7→ count(v, r)

]
// role counts

1 begin
2 count(v, r) = 0, ∀v ∈ V, ∀r ∈ R // init. counts
3 for t ∈ [1, . . . , T ] do
4 for (u, v) ∈ Et do
5 if n

(3)
t > 0 then // triangles

6 for w ∈
(
Nt(u) ∩Nt(v)

)
do

7 count(v′, equal3) += ω(3)

3 , ∀v′ ∈ {u, v, w} //  Equation 5.10a  

8 if n
(2)
t > 0 and r

(2)
t (u, v) > 0 then // wedges

9 for w ∈
(
Nt(u)⊕Nt(v)

)
do

10 for v′ ∈ {u, v, w} do
11 r ← GetRoleTimestep(v′, Et, {u, v, w})
12 if r = hub then
13 count(v′, hub) += ω(2)

2 //  Equation 5.10a  

14 else
15 count(v′, spoke) += ω(2)//  Equation 5.10a  

16 if n
(1)
t > 0 and r

(1)
t (u, v) > 0 then // 1-edges

17 count(u, equal2) += r (1)
t (u′, v′) //  Equation 5.10b  

18 count(v, equal2) += r (1)
t (u′, v′) //  Equation 5.10b  

19 for w ∈
(
V −

(
Nt(u) ∪Nt(v)

))
do

20 count(w, outlier) += ω(1) //  Equation 5.10a  
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6. SUMMARY

In this chapter, we summarize the contributions of this dissertation, and outline avenues for

future research:

In  Chapter 3  , we presented a study of the impact of graph structure and attribute auto-

correlation on the performance of collective classification/inference methods. By using a

recent attributed graph generative model that can create synthetic graphs with varying

structure and attribute correlation, our study is the first to evaluate these methods on a

wide-range of graphs. We considered different graph structure measures and found that the

link-density along with the attribute auto-correlation had the most impact on classification

accuracy. We also showed that it is possible to predict the area-under-the-curve (AUC)

score obtainable with collective classification (CC) methods, using a regression model. The

significance of this is that with the learned linear regression coefficients for a CC method on

some networks, we can predict the AUC score and use it to pick the method or model that

will likely perform the best for a particular network.

In  Chapter 4  , we first conducted an empirical study of motif evolution on real-world

dynamic networks and found that motifs do not change configurations from one time-slice

to a subsequent one, but rather kept re-appearing over time. Motivated by this finding, we

proposed DYMOND—a generative model that considers (i) the dynamic changes in overall

graph structure using temporal motif activity and (ii) the roles nodes play in motifs (e.g.,

one node plays the hub role in a wedge, while the remaining two act as spokes). Our model

first assigns a motif configuration (or motif type) and then samples inter-arrival times for

the motifs. One challenge that comes with it is sampling the motif placement. To this

end, we defined motif node roles and use them calculate the probability of each motif type.

Although motifs have been shown to be the building blocks of networks, we are the first

to propose a motif-based generative model for dynamic networks that can produce entirely

synthetic graphs. We find that using motifs and node roles in our model helps to outperform

other available dynamic network generative models at generating graph structure and node

behavior similar to the observed network..
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In  Chapter 5  , we developed a generative model for dynamic networks with content,

that (i) captures network structure dynamics through temporal motifs, and (ii) extends the

structural roles of nodes in motifs (e.g., a node acting as a hub in a wedge) to roles that

generate content embeddings. DYANE combines a node-roles GCN and a motif-type CNN,

with a content embedding model, for generating synthetic graphs with new structure and

content embeddings similar to the observed input network. Our model is the first to generate

synthetic dynamic networks and sample content embeddings based on motif node roles. To

the best of our knowledge, it is the only attributed dynamic network model that can generate

new content embeddings–not observed in the input graph, but still similar to that of the

input graph.

We also proposed a novel methodology for evaluating dynamic network generative models.

In  Chapter 4  , we adapt graph structure metrics to take into account the temporal aspect of

the network. Our use of the Kolmogorov-Smirnov (KS) test adapts graph structure metrics

designed for static graphs to the dynamic graph setting, by considering the distribution of

graph statistics. To consider node behavior, we use node-aligned metrics over the graph

snapshots to evaluate the node’s topological connectivity and temporal activity. In order

to compare models more easily, we proposed using the mean reciprocal rank (MRR) of the

KS statistics for the graph structure and the node behavior metrics. In  Chapter 5  , we also

derived a methodology to evaluate the content embeddings generated by nodes, taking into

account keywords extracted from the content (as topic representations), and using distance

metrics. Similar to our node behavior evaluation, we take the distribution of attributes over

time to evaluate the content embeddings generated by nodes, employing metrics based on

embeddings and topic similarity.

6.1 Contributions

• Frameworks

– Development of a framework to systematically assess the performance of collective

inference methods (  Chapter 3 ).
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– Development of a dynamic network generative framework for synthetic data gen-

eration, where the models act as components that allow to choose between gen-

erating only structure or also generating content embeddings (  Chapters 4  and  5 ).

• Models

– Development of DYMOND — a generative model for dynamic networks, lever-

aging motifs and node roles to create synthetic graphs with structure and node

behavior similar to an input graph ( Chapter 4 ).

– Development of DYANE — a generative model for attributed dynamic networks

that extends motif node-roles to roles that generate content embeddings, to create

synthetic graphs with structure, node behavior, and node content embeddings

similar to an input graph (  Chapter 5 ).

– Development of a Node Roles GCN and meta-model to create and update struc-

tural node embeddings based on motif node roles ( Chapter 5 ).

– Development of a Motif Types CNN to calculate motif type probabilities, combin-

ing the node role embeddings and content embeddings, to sample motifs (  Chap-

ter 5  ).

• Algorithmic Contributions

– Efficient algorithms to estimate motifs in the input network, and sample motifs

in the generated network (  Chapters 4 and  5 ).

– Efficient algorithm to create training samples from all motifs in the input network,

for training the Motif Types CNN ( Chapter 5 ).

• Methodological Contributions

– Graph structure evaluation: Adapted graph structure metrics to the dynamic

graph setting using the Kolmogorov-Smirnov (KS) test over the distribution of

values ( Chapter 4 ).
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– Node behavior evaluation: Proposed use of node-aligned metrics over the graph

snapshots and taking the inter-quartile range of their distributions, instead of the

mean and median values, to better capture topological connectivity and temporal

activity ( Chapter 4 ).

– Dynamic generative models evaluation: Proposed the use of the mean reciprocal

rank of the KS statistics to compare models using each set of graph metrics

metrics together (  Chapter 4 ).

– Content evaluation: Proposed the use of embedding distance metrics designed for

sets of embeddings to evaluate nodes’ generated content embeddings against the

observed. To evaluate nodes’ latent topics, proposed the extraction of keywords

from content embeddings and the use of set similarity metrics (  Chapter 5 ).

6.2 Implications and Future Directions

6.2.1 Dynamic network data

The generative models proposed will address the difficulty of finding readily-available

datasets of dynamic networks—attributed or not—and provide a way to study and analyze

dynamic networks. This work will also allow others to: (i) generate dynamic networks that

they can share without divulging individual’s private data, (ii) benchmark model perfor-

mance, and (iii) explore model generalization on a broader range of conditions, among other

uses. For example, in the task of node classification, we can now benchmark performance and

generalization in dynamic networks with varying structure, attribute auto-correlation, and

temporal behavior. Additionally, the evaluation measures proposed will elucidate models,

allowing fellow researchers to push forward in these domains.

6.2.2 On motif-based generative models

Incorporating motifs into walk-based generative models improves the structure of gener-

ated graphs [  101 ]. In graph convolutional networks (GCNs) for the task of node classifica-

tion, using a motif-based attention with weighted motif-adjacency matrices per motif type
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has been shown to improve the accuracy [ 102 ]. With this in mind, an alternative to directly

sampling motifs from node triples would be to use a random-walk-based model with a dis-

criminator based on motifs, node roles and content. Some ideas to do this would be: (1)

adding a motif-counts attention to a GCN, with weights based on shared edges per motif

type, or (2) using the node role embeddings from our proposed model DYANE, and (3) using

node content embeddings as features for the discriminator.

6.2.3 LLMs for content generation in dynamic networks

The work for content embedding sampling (  Chapter 5 ) was done before the rise in pop-

ularity of generative large language models (LLMs)—which would enable the generation of

new text for the content sampling component of our model. We make use of pre-trained

language models (PLMs), specifically SBERT models [  82 – 85 ], for embedding the content of

the input graph G. The sentence-transformer models we used consist of an encoder, which

creates the embeddings, and lack a decoder. They are designed for information retrieval,

clustering or sentence similarity tasks. An encoder-decoder model, such as T5, would allow

to use the decoder to generate content for the output graph G′. However, it is unclear how

to combine the content embeddings of the motif nodes so the decoder generates relevant text

(i.e., highly related to the input).

LLMs are scaled up pre-trained PLMs (e.g., model size or data size) and display surprising

emergent abilities that may not be observed in previous smaller PLMs [  103 ]. GPT-3 and

similar LLMs fall into the category of decoder models, trained with auto-regressive objectives,

and are more suitable for generative tasks than encoder-only models [  104 ,  105 ]. Multimodal

perception allows LLMs to acquire knowledge beyond text descriptions, such as structured

data (e.g., graphs and tables) [ 104 ]. Current work on multimodal large language models

(MLLMs) looks into cross-modal transferability, which allows a model to learn from one

modality (e.g., text, image, audio) and transfer the knowledge to the other modalities [ 106 ].

To integrate this, one possibility would be to use a pre-trained LLM as a decoder for text

generation, and train an encoder that incorporates the motif’s node embeddings into the

LLM prompt.
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